> [!definitionb] Definition
>
> Let $X$ and $Y$ be $C^p$-[[Manifold|manifolds]] ($p \ge 1$) modelled on the [[Banach Space|Banach spaces]] $E$ and $F$, respectively.
>
> Let $f: X \to Y$ be a $C^p$-[[Manifold Morphism|morphism]], $p \in X$, and $(U, \psi) \in X$, $(V, \varphi) \in Y$ such that $\varphi \circ f \circ \psi^{-1}$ is of class [$C^p$](Space%20of%20Continuously%20Differentiable%20Functions). The map between the [[Concrete Tangent Space|concrete tangent spaces]]
> $
> Df_{U, V}(\hat p): T_{(U, \psi, p)}X \to T_{(V, \varphi, f(p))}X
> $
> where
> $
> h \mapsto D(\varphi \circ f \circ \psi^{-1})(\hat p)(h)
> $
> is the [[Derivative|derivative]] of $f$ **interpreted with respect** to the pair of [[Atlas|charts]] $(U, \psi)$ and $(V, \varphi)$.
>
> $
> \begin{CD}
> T_pX @>>> T_{(U, \psi, p)}X\\
> @V{df(p)}VV @VV{Df_{U, V}(\hat p)}V \\
> T_{f(p)}Y @>>> T_{(V, \varphi, f(p))}X
> \end{CD}
> $
>
> To connect the different concrete derivatives obtained from different pairs of charts such that the above diagram commutes, let[^1]
> $
> df(p): T_pX \to T_pY
> $
> be a map between the [[Tangent Space|tangent spaces]], with
> $
> \ol{h} \mapsto \ol{Df_{U, V}(\hat{p})(h)}
> $
> where the bar refers to the corresponding [[Equivalence Class|equivalence classes]], then $df(p)$ is the **differential** of $f$ at $p$.
> [!theorem]
>
> The differential inherits the following properties from the [[Derivative|derivative]]:
> - Linear and continuous.
> - [[Chain Rule (Differential)|Chain Rule]]: $d(f \circ g)_p = dg_{f(p)} \circ df_p$
> - $d(\text{Id})_p = \text{Id}$
> - If $f$ is a [[Diffeomorphism|diffeomorphism]], then $df_p$ is a [[Space of Toplinear Isomorphisms|toplinear isomorphism]] with $(df_p)^{-1} = d(f^{-1})_{f(p)}$.
[^1]: See [[Well-Definedness of the Differential]]