> [!definition]
>
> Let $X$ be a [[Riemannian Manifold|Riemannian manifold]], then there exists a unique [[Covariant Derivative|covariant derivative]] $D$ such that for any vector fields $\xi, \eta, \zeta \in \vf(X)$,
> $
> \xi\angles{\eta, \zeta}_g = \angles{D_\xi\eta, \zeta}_g + \angles{\eta, D_\xi \zeta}_g
> $
> where $\angles{\eta, \zeta}_g \in C^\infty(X)$ is a [[Function on Manifold|function]], and $\xi \angles{\eta, \zeta}_g$ refers to its directional derivative evaluated with $\xi$. This derivative is known as the **metric derivative**/**Levi-Civita derivative**.
>
> *Proof.* Firstly, we can write the given property over all cyclic permutations to obtain
> $
> \begin{align*}
> \xi\angles{\eta, \zeta}_g &= \angles{D_\xi \eta, \zeta}_g + \angles{\eta, D_\xi \zeta}_g \\
> \eta \angles{\zeta, \xi}_g &= \angles{D_\eta \zeta, \xi}_g + \angles{\zeta, D_\eta \xi}_g \\
> \zeta \angles{\xi, \eta}_g &= \angles{D_\zeta \xi, \eta}_g + \angles{\xi, D_\zeta \eta}_g
> \end{align*}
> $
> Adding the first two and subtracting the third yields that
> $
> \begin{align*}
> &\xi\angles{\eta, \zeta}_g + \eta \angles{\zeta, \xi}_g + \zeta \angles{\xi, \eta}_g \\
> &= \angles{D_\xi\eta, \zeta}_g + \angles{D_\eta\xi, \zeta}_g + \angles{D_\xi\zeta, \eta}_g - \angles{D_\zeta\xi, \eta}_g \\
> &+ \angles{D_\eta\zeta, \xi}_g - \angles{D_\zeta\eta, \xi}_g \\
> &= \angles{[\xi, \zeta],\eta}_g + \angles{[\eta, \zeta], \xi}_g - \angles{[\eta, \xi], \zeta}_g + 2\angles{D_\xi\eta, \zeta}_g
> \end{align*}
> $
> rearranging the equation allows expressing $\angles{D_\xi\eta, \zeta}_g$ in terms of expressions independent of $D$,
> $
> \begin{align*}
> 2\angles{D_\xi\eta, \zeta}_g &= \xi\angles{\eta, \zeta}_g + \eta \angles{\zeta, \xi}_g + \zeta \angles{\xi, \eta}_g \\
> &+ \angles{[\xi, \eta], \zeta}_g - \angles{[\xi, \zeta], \eta}_g - \angles{[\eta, \zeta], \xi}_g
> \end{align*}
> $
> which commutes with addition on the first and third parameter. Since
> $
> \begin{align*}
> [\xi, f\eta] &= f[\xi, \eta] + (\xi f)\eta \\
> [f\xi, \eta] &= f[\xi, \eta] - (\eta f)\xi
> \end{align*}
> $
> expanding everywhere with the product rule yields the desired properties. From here we can obtain $D_\xi\eta$ as a vector field.
> [!theorem]
>
> Let $X$ be a [[Riemannian Manifold|Riemannian n-manifold]], and $(U, \varphi)$ be a chart, then there exists $n^3$ functions such that
> $
> D_{\part{}{x^j}}\ppi = \Gamma_{ij}^k\part{}{x^k}
> $
> known as the **Christoffel symbols**. If $g_{ij} = \angles{\ppi, \part{}{x^j}}_g$ on the chart, then
> $
> \Gamma_{ij}^k = \frac{1}{2}\sum_{l = 1}^ng^{kl}\braks{\part{g_{lj}}{x^i} + \part{g_{il}}{x^j} - \part{g_{ij}}{x^l}}
> $
> where the sum over $l$ is made explicit.
>
> *Proof*. Firstly if $\xi, \eta \in \vf(X)$, then the [[Bracket Product|bracket product]] has coordinate representation
> $
> [\xi, \eta] = \paren{\xi^i\frac{\partial \eta^j}{\partial x^i} - \eta^i\frac{\partial \xi^j}{\partial x^i}} \cdot \frac{\partial}{\partial x^j}
> $
> If $\xi = \part{}{x^j}$ and $\eta = \part{}{x^k}$, then
> $
> D_\xi \eta - D_\eta \xi = [\xi, \eta] = 0 \quad \Gamma_{jk}^l = \Gamma_{kj}^l
> $
> Now, let $\zeta = \ppi$, then applying the Levi-Civita condition yields
> $
> \begin{align*}
> \zeta \angles{\xi, \eta}_g &= \angles{D_\zeta \xi, \eta}_g + \angles{\xi, D_\zeta \eta}_g \\
> \frac{\partial g_{jk}}{\partial x^i} &= \sum_{l = 1}^n\braks{\Gamma_{ij}^{l}g_{kl} + \Gamma_{ik}^lg_{jl}}
> \end{align*}
> $
> Applying the same result in all three cyclic permutations of the arguments gives
> $
> \begin{align*}
> \frac{\partial g_{ij}}{\partial x^k} &= \sum_{l = 1}^n\braks{\Gamma_{ik}^{l}g_{jl} + \Gamma_{jk}^lg_{il}} \\
> \frac{\partial g_{ik}}{\partial x^j} &= \sum_{l = 1}^n\braks{\Gamma_{jk}^{l}g_{il} + \Gamma_{ij}^lg_{kl}}
> \end{align*}
> $
> where the indices are presented in a more standard order using the symmetry property. Adding the first two and subtracting the third yields
> $
> \begin{align*}
> {\part{g_{jk}}{x^i} + \part{g_{ij}}{x^k} - \part{g_{ik}}{x^j}} &= 2\sum_{l = 1}^n \Gamma_{ik}^lg_{jl}\\
> g^{kj}\braks{\part{g_{jk}}{x^i} + \part{g_{ij}}{x^k} - \part{g_{ik}}{x^j}} &= 2\sum_{l = 1}^n \Gamma_{ik}^lg^{kj}g_{jl}\\
> \sum_{j = 1}^ng^{kj}\braks{\part{g_{jk}}{x^i} + \part{g_{ij}}{x^k} - \part{g_{ik}}{x^j}} &= 2\sum_{j = 1}^n\sum_{l = 1}^n \Gamma_{ik}^lg^{kj}g_{jl} \\
> \sum_{j = 1}^ng^{kj}\braks{\part{g_{jk}}{x^i} + \part{g_{ij}}{x^k} - \part{g_{ik}}{x^j}} &= 2\Gamma_{ik}^j
> \end{align*}
> $
> because $\sum_{j = 1}^ng_{kj}g^{jl} = \one_{\bracs{k = l}}$.
> [!theorem]
>
> $
> \sum_{j = 1}^n\Gamma_{ij}^j = \frac{1}{2}\sum_{j = 1}^n\sum_{k = 1}^ng^{jk}\part{g_{jk}}{x^i}
> $
> *Proof*. Break the sum into three parts,
> $
> \sum_{j = 1}^n\sum_{k = 1}^n g^{jk}\part{g_{kj}}{x^i} + \sum_{j = 1}^n\sum_{k = 1}^n g^{jk}\part{g_{ik}}{x^j} - \sum_{j = 1}^n\sum_{k = 1}^n g^{jk}\part{g_{ij}}{x^k}
> $
> Between the second and third term, interchanging $j$ and $k$ does not change their values. Therefore they are equal and cancel out.