> [!theorem]
>
> Let $X$ and $Y$ be $C^p$-[[Manifold|manifolds]] ($p \ge 1$) modelled on the [[Banach Space|Banach spaces]] $E$ and $F$, respectively. Let $f: X \to Y$ be a $C^p$-[[Manifold Morphism|morphism]], and $(U, \psi) \in X$, $(V, \varphi) \in Y$ such that $\varphi \circ f \circ \psi^{-1}$ is of class [$C^p$](Space%20of%20Continuously%20Differentiable%20Functions).
>
> Define
> $
> df(p): T_pX \to T_pY
> $
> with
> $
> \ol{h} \mapsto \ol{Df_{U, V}(\hat{p})(h)}
> $
> where the bar refers to the corresponding [[Equivalence Class|equivalence classes]], then $df(p)$ is well-defined at $p$.
>
> *Proof*. Let $(U_1, \psi_1)$, $(V_1, \varphi_1)$ and $(U_2, \psi_2)$, $(V_2, \varphi_2)$ be two pairs of [[Atlas|charts]] with $p \in U_1, U_2$ and $f(p) \in V_1, V_2$ such that $\varphi_1 \circ f \circ \psi_1^{-1}$ and $\varphi_2 \circ f \circ \psi_2^{-1}$ are $C^p$ morphisms.
>
> Let $h \in T_{(U_1, \psi_1, p)}X$, then $\braks{D(\psi_2 \circ \psi_1^{-1})(\psi_1(p))}(h)$ is the unique vector in $T_{(U_2, \psi_2, p)}$ equivalent to $h$. In which case, by the [[Chain Rule|chain rule]]
> $
> \begin{align*}
> &\braks{Df_{U_2, V_2}(\psi_2(p))} \circ \braks{D(\psi_2 \circ \psi_1^{-1})(\psi_1(p))}(h) \\
> &=\paren{D\braks{(f_{U_2, V_2}) \circ (\psi_2 \circ \psi_1^{-1})}(\psi_1(p))}(h) \\
> &=\paren{D\braks{(\varphi_2 \circ f \circ \psi_2^{-1}) \circ (\psi_2 \circ \psi_1^{-1})}(\psi_1(p))}(h) \\
> &=\paren{D\braks{(\varphi_2 \circ f \circ \psi_1^{-1})}(\psi_1(p))}(h) \\
> &= \braks{D(f_{U_2,V_1})(\psi_1(p))}(h) \in T_{(V_2, \varphi_2, f(p))}Y
> \end{align*}
> $
> Now,
> $
> \braks{D(\varphi_1 \circ \varphi_2^{-1})(\varphi_2(p))} \circ \braks{D(f_{U_2,V_1})(\psi_1(p))}(h)
> $
> is the unique vector in $T_{(V_1, \varphi_1, f(p))}Y$ equivalent to $\braks{D(f_{U_2,V_1})(\psi_1(p))}(h)$. By the chain rule again,
> $
> \begin{align*}
> &\braks{Df_{U_2, V_2}(\psi_2(p))} \circ \braks{D(\psi_2 \circ \psi_1^{-1})(\psi_1(p))}(h) \\
> &\sim \braks{D(\varphi_1 \circ \varphi_2^{-1})(\varphi_2(p))} \circ \braks{D(f_{U_2,V_1})(\psi_1(p))}(h) \\
> &= \paren{D\braks{(\varphi_1 \circ \varphi_2^{-1}) \circ (\varphi_2 \circ f \circ \psi_1^{-1})}(\psi_1(p))}(h) \\
> &= \braks{D(\varphi_1 \circ f \circ \psi_1^{-1})(\psi_1(p))}(h) \\
> &= \braks{D(f_{U_1, V_1})(\psi_1(p))}(h)
> \end{align*}
> $
> As equivalent concrete tangent vectors get mapped to equivalent concrete tangent vectors, the differential between the [[Tangent Space|tangent spaces]] is well-defined.