> [!theorem]
>
> Let $X$ be a [[Compactness|compact]] [[Riemannian Manifold|Riemannian n-manifold]] without boundary. Suppose that the [[Closed Eigenvalue Problem]] has distinct solutions
> $
> 0 \le \lambda_1 \le \lambda_2 \le \cdots
> $
> Let $f \in \sch(X)$ be in the [[Sobolev Space (Manifold)|Sobolev space]], then
> $
> f \perp \bigoplus_{j < k}\eig{(\lambda_j)}
> $
> implies that
> $
> \lambda_k \le \frac{D[f, f]}{\norm{f}_{L^2}^2}
> $
> with equality if and only if $f$ is an eigenvector corresponding to $\lambda_k$.
>
> *Proof*. Let $\seq{\proj_j}$ be the [[Orthogonal Projection|orthogonal projections]] corresponding to the eigenspaces of $\seq{\lambda_j}$. Let $N \in \nat$, then
> $
> \begin{align*}
> 0 &\le D\braks{f - \sum_{j = 1}^N\proj_j(f), f - \sum_{j = 1}^N\proj_j(f)}\\
> &= D\braks{f - \sum_{j = k}^N\proj_j(f), f - \sum_{j = k}^N\proj_j(f)}\\
> &= D[f, f] - 2\sum_{j = k}^nD[f, \proj_j(f)] +\sum_{j, l = k}^ND[\proj_j(f), \proj_l(f)] \\
> &= D[f, f] + 2\sum_{j = k}^N\angles{f, \Delta \proj_j(f)}_{L^2} - \sum_{j, l = k}^N \angles{\proj_j(f), \Delta \proj_l(f)}_{L^2}\\
> &= D[f, f] - 2\sum_{j = k}^N\lambda_j\angles{f, \proj_j(f)}_{L^2} + \sum_{j = k}^N \lambda_j\angles{\proj_j(f), \proj_j(f)}_{L^2}\\
> &= D[f, f] - \sum_{j = k}^N\lambda_j\norm{\proj_j(f)}_{L^2}^2
> \end{align*}
> $
> so
> $
> \begin{align*}
> D[f, f] &\ge \sum_{j = k}^\infty \lambda_j \norm{\proj_j(f)}_{L^2}^2 \\
> &\ge \lambda_k \sum_{j = k}^\infty \norm{\proj_j(f)}_{L^2}^2 \ge \lambda_k \norm{f}_{L^2}^2
> \end{align*}
> $
> where all inequalities becomes equalities if $f$ is an eigenvector corresponding to $\lambda_k$.
>
> [!theorem]
>
> Let $T: \real^d \to \real^d$ be a symmetric operator, and $\mu_1$ be its largest eigenvalue, then
> $
> \mu_1 = \sup_{x \ne 0}\frac{\angles{x, Tx}}{\norm{x}^2} = \sup_{\norm{x} = 1}\angles{x, Tx}
> $
> where the maximum is achieved on the eigenvectors of $\mu_1$.