> [!theorem]
>
> Let $X$ be an [[Orientation on Manifold|orientated]] [[Riemannian Manifold|Riemannian n-manifold]], $\xi \in \vf(X)$ be a [[Compactly Supported|compactly supported]] [[Vector Field|vector field]], and $N$ be the outward-pointing normal vector field on $\partial X$, then
> $
> \iota^*_{\partial X}(dV_g(\xi, \cdots)) = \angles{\xi, N}_g dV_{g^*}
> $
> and
> $
> \int_X \div{\xi}dV_g = \int_{\partial X} \angles{\xi, N}_g dV_{g^*}
> $
>
> where $\partial X$ is given the induced Stokes orientation, and $g^*$ is the induced Riemannian metric.
>
> *Proof*. Let
> $
> \xi = \xi_\perp + \xi_\partial \quad \xi_\perp = \angles{\xi, N}_g N
> $
> From here,
> $
> \begin{align*}
> \iota_{\partial X}^*(dV_g(\xi_\perp, \cdots)) &= \angles{\xi, N}_g dV_{g}(N, \cdots) \\
> &= \angles{\xi, N}_g dV_{g^*}(\cdots)
> \end{align*}
> $
> On the other hand, $\xi_\partial$ takes values in $T\partial X$, so $dV_g(\xi_\partial, \cdots) = 0$.
>
> Using [[Stokes' Theorem]],
> $
> \begin{align*}
> \int_X \div{\xi}dV_g &= \int_X d[dV_g(\xi, \cdots)] = \int_{\partial X}\iota_{\partial X}^*dV_g(\xi, \cdots) \\
> &= \int_{\partial X}\iota_{\partial X}^*\angles{\xi, N}_gdV_{g^*}
> \end{align*}
> $