> [!theorem]
>
> Let $X$ be a [[Smooth Manifold|smooth manifold]] and $f \in C^\infty(X)$ be a [[Function on Manifold|smooth function]]. Let $\gamma: [a, b] \to X$ be a piecewise smooth [[Curve|curve]] segment, then
> $
> \int_\gamma df = f(\gamma(b)) - f(\gamma(a))
> $
> *Proof*. By the ordinary fundamental theorem of calculus,
> $
> \begin{align*}
> \int_\gamma df &= \int_{[a, b]} \angles{df_{\gamma(t)}, d\gamma_{t}} \\
> &= \int_{[a, b]}(f \circ \gamma)'(t)dt = f(\gamma(b)) - f(\gamma(a))
> \end{align*}
> $