> [!theorem]
>
> Let $X$ be a [[Riemannian Metric|Riemannian]] [[n-Manifold|n-manifold]], $h \in C^1$, $f \in C^2$ such that $h\grad{f}$ has [[Compactly Supported|compact support]], and $N$ be the outward normal [[Vector Field|vector field]] on $\partial X$, then
> $
> \int_X h\Delta f + \angles{\grad{h}, \grad{f}}dV = \int_{\partial X}h\angles{N, f}dA
> $
> and if both functions are compactly supported, then
> $
> \int_X h \Delta f - f \Delta h dV = \int_{\partial X} h\angles{N, f} - f\angles{N, h}dA
> $
>
> *Proof*. Firstly, by the product rule,
> $
> \div{h\grad{f}} = h\Delta f + \angles{\grad{h}, \grad{f}}
> $
> By the [[Divergence Theorem|divergence theorem]],
> $
> \int_X\div{h\grad{f}}dV = \int_{\partial X} \angles{hN, f}dA = \int_{\partial X} h\angles{N, f}dA
> $
> Similarly, since
> $
> \begin{align*}
> \div{h\grad{f} - f\grad{h}} &= h\Delta f - f\Delta h + \angles{\grad{h}, \grad{f}} \\
> &- \angles{\grad{f}, \grad{h}} \\
> &= h\Delta f - f \Delta h
> \end{align*}
> $
> and $\angles{N, f} = \angles{N, \grad{f}}$. Applying the divergence theorem again yields the desired result.