> [!definition]
>
> Let $(X, g)$ be a [[Riemannian Manifold|Riemannian manifold]] modelled on $E$, $\eta \in \vf(X)$ be a $C^p$-[[Vector Field|vector field]], and $D$ be the [[Metric Derivative|metric derivative]]. Let $\text{Lend}$ be the functor mapping each [[Banach Space|Banach space]] $E$ to $L(E, E)$, then the derivative induces a [[Sections of Vector Bundles|section of]] $\text{Lend}(E)$,
> $
> X \to \text{Lend}(TX) \quad p \mapsto D_{(\cdot)}\eta|_{T_pX}
> $
> From here, define the **divergence** of $\eta$ to be
> $
> \div \eta : X \to \real \quad p \mapsto \tr\braks{D_{(\cdot)}\eta|_{T_pX}}
> $
> which is a well-defined $C^{p - 1}$ function as the trace is linear and independent of coordinates.
> [!theorem]
>
> Let $\xi, \eta \in \vf(X)$ and $f \in C^p(X)$, then
> 1. Linearity: $\div{\xi + \eta} = \div{\xi} + \div{\eta}$.
> 2. Product Rule: $\div{f\xi} = f\div{\xi} + \angles{\grad f, \xi}$.
>
> *Proof*. By the product rule for the [[Connection|connection]],
> $
> D_\xi (f\eta) = (\xi f) \cdot \eta + f \cdot D_\xi\eta
> $
> Taking the trace gives the desired result.
> [!theorem]
>
> Let $\xi \in \vf(X)$, $(U, \varphi = (x_1, \cdots, x_n))$ be a chart, and $\Gamma_{ij}^k$ be the Christoffel symbols with respect to this chart, then
> $
> \div{\xi} = \sum_{j = 1}^n\braks{\part{\xi^j}{x^j} + \sum_{l = 1}^n \xi^l\Gamma_{lj}^j}
> $
> where the sums are made explicit. Moreover, if $g_{ij} = \angles{\ppi, \part{}{x^j}}$, and $G = (g_{ij})$, then
> $
> \div{\xi} = \frac{1}{\sqrt{\det G}}\sum_{j = 1}^n\part{\paren{\xi^j\sqrt{\det G}}}{x^j}
> $
> *Proof*. Let $1 \le i \le n$, then expanding using the product rule,
> $
> \begin{align*}
> D_{\ppi}\xi &= D_{\ppi}\paren{\xi^j\part{}{\xi_j}} \\
> &= \part{\xi^j}{x^i}\part{}{x^j} + \xi^j \Gamma_{ij}^k \part{}{x^k}
> \end{align*}
> $
> Taking the $j$-th coordinate from the above and summing over each coordinate yields the desired result. On the other hand, interchanging the sum
> $
> \begin{align*}
> \div{\xi} &= \sum_{j = 1}^n\braks{\part{\xi^j}{x^j} + \sum_{l = 1}^n \xi^l\Gamma_{lj}^j} \\
> &= \sum_{j = 1}^n\braks{\part{\xi^j}{x^j} + \xi^j\sum_{l = 1}^n \Gamma_{jl}^l} \\
> &= \sum_{j = 1}^n\braks{\part{\xi^j}{x^j} + \frac{1}{2}\xi^j\sum_{k = 1}^n\sum_{l = 1}^n g^{kl}\part{g_{kl}}{x^j}} \\
> &= \sum_{j = 1}^n\braks{\part{\xi^j}{x^j} + \frac{1}{2}\xi^j\tr\paren{G^{-1}\part{G}{x^j}}} \\
> &= \sum_{j = 1}^n\braks{\part{\xi^j}{x^j} + \frac{1}{2}\xi^j\part{\ln \det G}{x^j}} \\
> &= \frac{1}{\sqrt{\det G}}\sum_{j = 1}^n\part{\paren{\xi^j\sqrt{\det G}}}{x^j}
> \end{align*}
> $
> [!theorem]
>
> Let $\xi \in \vf(X)$, then
> $
> d(dV_g(\xi, \cdots )) = \div{\xi}dV_g
> $
> *Proof*. In local coordinates,
> $
> \begin{align*}
> dV_g(\xi, x_2, \cdots, x_{n}) &=dV_g\paren{\xi^i\ppi, x_2, \cdots, x_n} \\
> &= (-1)^{i-1}\xi_i \sqrt{\det G}dx^1 \wedge \cdots \wedge \wh{dx^i} \wedge \cdots \wedge dx^n \\
> d\braks{dV_g(\xi, x_2, \cdots, x_{n})} &= (-1)^{i - 1}\part{(\xi^i\sqrt{\det G})}{x^i} dx^i \wedge dx^1 \wedge \cdots \wedge \wh{dx^i} \wedge \cdots \wedge dx^n \\
> &= \part{(\xi^i\sqrt{\det G})}{x^i} dx^1 \wedge \cdots \wedge dx^n \\
> &= \div{\xi}dV_g
> \end{align*}
> $