> [!definition]
>
> Let $(X, g)$ be a smooth [[Riemannian Manifold|Riemannian n-manifold]]. For any rough [[Vector Field|vector fields]] $\xi$ and $\eta$, define an [[Inner Product|inner product]]
> $
> \angles{\xi, \eta}_{\scl^2} = \int_X \angles{\xi, \eta}_g dV
> $
> and $\mathscr L^2(X)$ as the [[Hilbert Space|Hilbert space]] of square-integrable vector fields. For any $f \in C^1(X)$,
> $
> \angles{\grad f, \xi}_{\scl^2} = -\angles{f, \div{\xi}}_{L^2}
> $
> Thus, for any $f \in L^2(X)$, if there exists $\eta \in \mathscr{L}^2(X)$ such that
> $
> \angles{\eta, \xi}_{\scl^2} = -\angles{f, \div{\xi}}_{L^2}
> $
> for all compactly supported $C^1$-vector fields. then $\eta = \Grad{f}$ is the **weak derivative** of $f$. The space $\mathscr H(X)$ refers to the subspace of $L^2(X)$ with weak derivatives in $\mathscr L^2(X)$, with the following inner product
> $
> \angles{f, g}_\sch = \angles{f, g}_{L^2} + \angles{\Grad{f}, \Grad{g}}_{\scl^2}
> $
> The [[Function on Manifold|smooth functions]] $C^\infty(X)$ is dense in $\sch(X)$.
>
> *Proof*. Since
> $
> \div{f\div{\xi}} = f\div{\xi} + \angles{\grad{f}, \xi}
> $
> By the [[Divergence Theorem|divergence theorem]], $\int_X f\div{\xi} dV = 0$.
> [!definition]
>
> Let $f, g \in \sch(X)$, then the derivative part of the inner product
> $
> D[f, g] = \angles{\Grad f, \Grad g}_{\scl^2}
> $
> is known as the **energy integral**.
> [!theorem]
>
> Let $\phi \in C^2(X)$ be a solution of the [[Closed Eigenvalue Problem|closed eigenvalue problem]], then
> $
> \angles{\Delta \phi, f}_{L^2} = -D[\phi, f]
> $
> for all $f \in \sch(X)$. Moreover, the mapping $F_\phi: \sch(X) \to \real$ defined by $f \mapsto -D[\phi, f]$ is a [[Bounded Linear Functional|bounded linear functional]].
>
> *Proof*. Using [[Green's Formulas]],
> $
> \int_X f\Delta \phi + \angles{\Grad f, \Grad{\phi}}dV = 0
> $
> for all $f \in C_c^\infty(X) = C^\infty(X)$ since $X$ is [[Compactness|compact]]. Moreover, $\norm{F_\phi} \le \norm{\phi}_{\sch}$. By the uniqueness part of the [[Linear Extension Theorem|linear extension theorem]], the equation holds for all $f \in \sch(X)$.