> [!definition]
>
> Let $X$ be a $C^p$-[[Manifold|manifold]] on a [[Banach Space|Banach space]] $E$. Let $p \in X$ and $(U, \psi) \in X$ be any [[Atlas|chart]] with $p \in U$, then $(U, \psi, p, v)$ is a **concrete tangent vector** at $p$, *interpreted* with respect to $(U, \psi)$. The set
> $
> T_{(U, \psi, p)}X = \bracs{(U, \psi, p, v): v \in E} \iso E
> $
> is the **concrete tangent space** at $p$, *interpreted* with respect to $(U, \psi)$, which inherits all structures from $E$.