> [!definition]
>
> Let $X$ be a $C^p$-[[Manifold|manifold]] modelled on $E$, $\pi$ be a $C^{p - 1}$-[[Vector Bundle|vector bundle]] modelled on $F$, and $L^k$ be the $k$-[[Tensor|tensor]] [[Differentiable Functor|functor]]. Then the induced bundle $L^k\pi$ is the $k$-**tensor bundle** of $\pi$.
> [!theorem]
>
> Let $\xi \in \mathbf{S}(L^k\pi)$ and $\eta \in \mathbf{S}(L^r\pi)$. Define their **tensor product** to be a mapping
> $
> \xi \otimes \eta: X \to L^{k + r}\pi \quad p \mapsto \xi_p \otimes \eta_p
> $
> then $\xi \otimes \eta \in \mathbf{S}(L^{k + r}\pi)$.
>
> *Proof*. Let $\tau: \pi^{-1}(U) \to U \times F$ be a trivialising map for $\pi$, and $L^j\tau: \pi^{-1}(U) \to U \times L^jF$ be the corresponding trivialising maps. In local coordinates,
> $
> (\wh{\xi \otimes \eta})_p = \wh\xi_p \otimes \wh\eta_p
> $
> the tensor product is bilinear and bounded. Hence $\xi \otimes \eta \in \mathbf{S}(L^{k + r}\pi)$.
> [!theorem]
>
> Let $\mathbf{S}(\pi)$ be the space of [[Sections of Vector Bundles|sections of]] $\pi$, and $\lambda \in \mathbf S(L^k\pi)$ be a section of $L^k\pi$, then $\lambda$ induces a multilinear map
> $
> \lambda: \mathbf{S}(\pi)^k \to C^{p - 1}(X) \quad \lambda(\xi^1, \cdots, \xi^k)(p) = \lambda_p(\xi^1_p, \cdots, \xi^k_p)
> $
> Let $\tau: \pi^{-1}(U) \to U \times F$ be a trivialising map for $\pi$, and
> $
> L^k\tau: L^k\pi^{-1}(U) \to U \times L^k(F) \quad (L^k\tau)_p = L^k\tau_p
> $
> be the corresponding trivialising map for $L^k\pi$, then the composition can be taken locally as
> $
> \lambda(\xi^1, \cdots, \xi^k)(p) = \td \lambda(\wh p) (\td \xi^1(\wh p), \cdots, \td \xi^k(\wh p))
> $
>
> *Proof*. For each $p \in U$, $\tau_p \in L(\pi_p, F)$ is an isomorphism, and $L^k(\tau)_p = L^k(\tau_p^{-1})$. Thus the local representations are
> $
> \td\xi^j: U \to F \quad p \mapsto \tau_p \circ \xi^j_p
> $
> and
> $
> \td\lambda: U \to L^k(F) \quad p \mapsto L^k(\tau)_p \circ \lambda_p = \lambda_p \circ \tau_p^{-1}
> $
> where the composition is on each argument. From here,
> $
> \begin{align*}
> \lambda(\xi^1, \cdots, \xi^k)_p &= \lambda_p(\xi^1_p, \cdots, \xi^k_p) \\
> &= \lambda_p(\tau_p^{-1} \circ \tau_p \cdot \xi_p^{1}, \cdots, \tau_p^{-1} \circ \tau_p \cdot \xi_p^{k}) \\
> &= \td\lambda_p \cdot (\td\xi_p^1, \cdots, \td \xi_p^k)
> \end{align*}
> $
> Now, with respect to these trivialising maps, the composition $L^k(F) \times F^k$ is $k + 1$-linear and bounded, and thus is differentiable. By the differentiability of $\lambda$ and $\bracs{\xi^j}_1^k$, $\lambda(\xi^1, \cdots, \xi^k)$ is of class $C^{p - 1}$.
> [!theorem]
>
> Let $X$ be a $C^p$-manifold and $\pi$ be a $C^{p - 1}$-vector bundle. Suppose that
> 1. For any $p \in X$, there exists a neighbourhood $U \in \cn^o(p)$ such that $\pi$ admits a [[Frame|frame]].
> 2. For any [[Open Cover|open cover]], $X$ admits a $C^{p - 1}$ [[Partition of Unity|partition of unity]] subordinate to it.
>
> and let $\lambda: \mathbf{S}(\pi)^k \to C^{p - 1}(X)$ be a $k$-[[Multilinear Map|linear]] map, then for each $p \in X$, there exists $\lambda_p \in L^k(\pi_p)$ such that
> $
> \lambda(\xi^1, \cdots, \xi^k) = \lambda_p (\xi^1, \cdots, \xi^k)
> $
> and the mapping $p \mapsto \lambda_p$ is a section of $\mathbf{S}(L^k\pi)$.
>
> *Proof*. With condition $(1)$ and $(2)$, the modules $(C^{p - 1}(X), \mathbf{S}(\pi))$ forms a [[Pointwise Linear Decomposition|pointwise decomposition system]], so $\lambda$ admits a pointwise decomposition. Now, locally, $\lambda$ pointwise can be represented as a tensor product of the value of the frame. By extracting coefficients, we find that $\lambda$ is $C^{p - 1}$.