> [!definition]
>
> Let $X$ be a smooth [[Manifold|manifold]]. A **connection** $D$ is a $\real$-[[Multilinear Map|bilinear]] map
> $
> D: \vf(X)^2 \to \vf(X) \quad (\xi, \eta) \mapsto D_\xi \eta
> $
> that combines two [[Vector Field|vector fields]] such that
> 1. $D$ is $C^\infty(X)$-linear on the first argument.
> 2. $D$ satisfies the product rule on the second argument, that is, $D_\xi(f\eta) = \xi f \cdot \eta + f \cdot D_\xi\eta$.
> [!theorem]
>
> Let $D$ be connection, if $X$ is modeled on $\real^n$, then for each $p \in X$, there exists a bilinear map
> $
> D_p: T_pX \times \vf(X) \to T_pX
> $
> such that for any $\xi, \eta \in \vf(X)$,
> $
> (D_\xi\eta)_p = D_p(\xi_p, \eta)
> $
> In other words, it acts pointwise based on the first argument. Thus for any vector $v \in T_pX$, we can denote $D_v\xi = D_p(v, \xi)$.
>
> *Proof*. Firstly, for any fixed $\eta \in \vf(X)$, $D_{\cdot}\eta$ is a $C^\infty(X)$ linear map on $\vf(X)$. Since $\vf(X)$ forms a [[Pointwise Linear Decomposition|pointwise linear decomposition system]], $D_{\cdot}\eta$ has representation
> $
> D_p\eta: T_pX \to T_pX
> $
> such that for any $\xi \in \vf(X)$,
> $
> (D_\xi\eta)_p = D_p\eta(\xi)
> $