> [!definition]
>
> Let $X$ and $Y$ be [[Hausdorff Space|Hausdorff]] [[Manifold|manifolds]] of class $C^p$, $f: X \to Y$ be a $C^p$-[[Manifold Morphism|morphism]], and $\xi \in \vf(X)$, $\xi' \in \vf(Y)$ be $C^{p - 1}$ [[Vector Field|vector fields]]. The vector fields $\xi$ and $\xi'$ are $f$-**related** if the following diagram commutes:
> $
> \begin{CD}
> X @>f>> Y \\
> @V{\xi}VV @VV{\xi'}V \\
> TX @>>df> TY
> \end{CD}
> $
> [!theorem]
>
> Let $X$ and $Y$ be smooth [[n-Manifold|n-manifolds]], $F: X \to Y$ be a smooth map, $\xi \in \vf(Y)$, and $\eta \in \vf(X)$. Then $\xi$ and $\eta$ are $F$-related if and only for any $U \subset Y$ and $f \in C^\infty(U)$,
> $
> \xi(f \circ F) = (\eta f) \circ F
> $
> In other words, $\xi$ and $\eta$ are $F$-related if and only if they are equal [[Vector Fields as Derivations|as derivations]].
>
> *Proof*. Let $p \in X$, $(U, \varphi)$ be a chart at $p$ and $(V, \psi)$ be a chart at $f(p)$, then by expanding through the chain rule,
> $
> \begin{align*}
> \xi (f \circ F)(p) &= \xi(p) \cdot (f \circ F) \\
> &= D(f \circ F \circ \varphi^{-1})_{\hat p} \cdot \hat \xi(\hat p) \\
> &= D(f \circ \psi^{-1})_{\widehat{F(p)}} \cdot D(F_{U, V}) \cdot \hat \xi(\hat p)
> \end{align*}
> $
> and
> $
> \begin{align*}
> \eta f \circ F(p) &= D(f \circ \psi^{-1})_{\widehat{F(p)}} \cdot \hat \xi(\hat p)
> \end{align*}
> $
> If $\eta(p) = dF_p(\xi(p))$, then $\xi(f \circ F) = \eta f \circ F$. If $\xi(f \circ F) = \eta f \circ F$ for every $f \in C^\infty(U)$, then $\eta(p) = dF_p(\xi(p))$ and they are related.