> [!theorem]
>
> Let $X$ be a [[Random Variable|random variable]] with $X \in L^1$, then
> $
> \bp\bracs{\abs{X - \ev(X)} \ge t} \le \frac{\var{X}}{t^2}
> $
> More familiarly, if $\sigma = \sqrt{\var{X}}$ is the [[Standard Deviation|standard deviation]], then
> $
> \bp\bracs{\abs{X - \ev(X)} \ge k\sigma} \le \frac{1}{k^2}
> $
> *Proof*. By [[Markov's Inequality]].
> [!theorem]
>
> Let $\seqf{X_i} \subset L^1$ be a family of [[Correlation|uncorrelated]] random variables. Let $S_n = \sum_{i = 1}^nX_i$, and $s_n = \ev(S_n)$, then for all $t \ge 0$,
> $
> \bp\bracs{\abs{S_n - s_n} \ge t} \le \frac{\sum_{i = 1^n}\var{X_i}}{t^2}
> $
> *Proof*. Denote $x_i = \ev(X_i)$, then
> $
> \begin{align*}
> \var{S_n} &= \ev\braks{(S_n - s_n)^2} \\
> &= \ev\braks{\paren{\sum_{i = 1}^n(X_i - x_i)}^2} \\
> &= \sum_{i = 1}^n\ev\braks{(X_i - x_i)^2} + \sum_{1 \le i < j \le n}\cov{X_i, X_j} \\
> &= \sum_{i = 1}^n\var{X_i}
> \end{align*}
> $