> [!theorem]
>
> Let $X$ be a [[Random Variable|random variable]], then for all $t \in \real$,
> $
> \bp\bracs{X \ge t} \le \inf_{a > 0} \frac{\ev(e^{aX})}{e^{at}}
> $
> *Proof*. Let $a > 0$, then by [[Markov's Inequality]],
> $
> \bp\bracs{X \ge t} = \bp\bracs{e^{aX} \ge e^{at}} \le \frac{\ev(e^{aX})}{e^{at}}
> $