> [!theorem]
>
> Let $\seq{x_n}$ be a non-negative, non-decreasing [[Sequence|sequence]]. If there exists $a > 0$ and $\varepsilon > 0$ such that
> $
> \frac{x_n}{an} > 1 + \varepsilon
> $
> infinitely often. Then there exists a *lacunary* sequence $\seq{n_k}$ such that $\frac{x_{n_k}}{a{n_k}} > 1 + \varepsilon/3$ infinitely often.
>
> On the other hand, if
> $
> \frac{x_n}{an} < 1 - \varepsilon
> $
> then there exists a lacunary sequence $\seq{n_k}$ such that $\frac{x_{n_k}}{a_{n_k}} < 1 - \varepsilon/3$ infinitely often.
>
> *Proof*. Let $n_k = \lceil (1 + \varepsilon/2)^k \rceil$, then $n_k$ is a lacunary sequence where
> $
> 1 + \frac{1}{3}\varepsilon < \frac{n_{k + 1}}{n_k} < 1 + \frac{2}{3}\varepsilon
> $
> eventually. Since $x_n/an > 1 + \varepsilon$ infinitely often, there exists $n$ large enough such that the above holds while $x_n > an(1 + \varepsilon)$. Choose $k \in \nat$ such that $n \in (n_{k-1}, n_{k}]$, then
> $
> \begin{align*}
> x_{n_k} \ge x_n > an(1 + \varepsilon) &> an_{k - 1}(1 + \varepsilon) \\
> &> \frac{a(1 + \varepsilon)n_k}{1 + \frac{2}{3}\varepsilon} \\
> &= an_k\paren{1 + \frac{\varepsilon}{3 + 2\varepsilon}}
> \end{align*}
> $
> On the other hand
> $
> \begin{align*}
> x_{n_k} &\le x_n \\
> &\le an(1 - \varepsilon) \\
> &< an_{k - 1}(1 - \varepsilon)(1 + 2\varepsilon/3) \\
> &< an_{k - 1}\paren{1 - \frac{\varepsilon}{3}}
> \end{align*}
> $