> [!theorem]
>
> Let $\seq{X_n} \subset L^1$ be a family of [[Probabilistic Independence|independent]] identically [[Probability Distribution|distributed]] [[Random Variable|random variables]]. Let $S_n = \sum_{i = 1}^nX_i$, then for all $\varepsilon > 0$,
> $
> \bp\bracs{\abs{\frac{S_n}{n} - \ev(X_1)} \ge \varepsilon} \to 0
> $
> the sample mean converges to the [[Expectation|expectation]] [[Convergence in Measure|in probability]].
>
> ### Tail Bound
>
> Let $N > 0$, let $X_i^{\le N} = X_i \cdot \one_{\abs{X_i} \le N}$ and $X_i^{> N} = X_i \cdot \one_{\abs{X_i} > N}$ such that $\abs{X_i^{\le N}} + \abs{X_i^{> N}} = \abs{X_i}$. By [[Monotone Convergence Theorem for Sequences|monotone convergence theorem]],
> $
> \limv{N}\ev\paren{\abs{X_i^{\le N}}} = \ev(\abs{X_i}) = \ev(\abs{X_1})
> $
> so
> $
> \limv{N}\abs{X_i^{> N}} = \ev{(\abs{X_i})} - \limv{N}\ev{(\abs{X_i^{\le N}})} = 0
> $
>
> ### The Body
>
> Let $\varepsilon > 0$ and $N$ such that $\ev(X_i^{> N}) < \varepsilon^2/8$. Let
> $
> S_n^{\le N} = \sum_{k = 1}^nX_k^{\le N} \quad S_n^{>N} = \sum_{k = 1}^nX_k^{>N}
> $
> and $\ol{S}_n^{\le N} = S_n^{\le N}/n$, $\ol{S}_n^{>N} = S_n^{>N}/n$. Now that we bounded the variable, it's possible to use [[Chebyshev's Inequality]],
> $
> \begin{align*}
> \bp\bracs{\abs{\ol{S}_n^{\le N} - \ev\paren{\ol{S}_n^{ \le N}}}> \varepsilon/2} &\le \frac{n\var{X_1^{\le N}/n}}{(\varepsilon/2)^2} \\
> &= \frac{\var{X_1^{\le N}}}{(\varepsilon/2)^2n} \\
> &\le \frac{4N^2}{\varepsilon^2n}
> \end{align*}
> $
> where if $n > 8N^2/\varepsilon^3$, $\frac{4N^2}{\varepsilon^2n} < \varepsilon/2$.
>
> ### The Tail
>
> For the tail,
> $
> \begin{align*}
> \bp\bracs{\abs{\ol{S}_n^{>N} - \ev\paren{\ol{S}_n^{>N}}} > \varepsilon/2} &\le \frac{\ev\paren{\abs{\ol{S}_n^{>N} - \ev\paren{\ol{S}_n^{>N}}}}}{\varepsilon/2} \\
> &\le \frac{\ev\paren{\abs{\ol{S}_n^{>N}}} + \abs{\ev\paren{\abs{\ol{S}_n^{>N}}}}}{\varepsilon/2} \\
> &\le \frac{4\ev\paren{\abs{\ol{S}_n^{>N}}}}{\varepsilon} \\
> &\le \frac{\varepsilon}{2}
> \end{align*}
> $
> where the last bound comes from the choice of $N$.
>
> ### Combined
>
> Therefore for $n > 8N^2/\varepsilon^3$,
> $
> \begin{align*}
> \bp\bracs{\abs{\ol{S}_n - \ev(X_1)} > \varepsilon} &\le \bp\bracs{\abs{\ol{S}_n^{\le N} - \ev\paren{\ol{S}_n^{ \le N}}}> \varepsilon/2} \\
> &+ \bp\bracs{\abs{\ol{S}_n^{>N} - \ev\paren{\ol{S}_n^{>N}}} > \varepsilon/2} \\
> &\le \varepsilon
> \end{align*}
> $
> which gives the convergence in probability.
>
>
> [^1]: It's sufficient for them to be not linearly correlated.