> [!theorem] First Borel-Cantelli Lemma
>
> Let $(\Omega, \cf, \mu)$ be a [[Measure Space|measure space]] and $\seq{E_n} \subset \cf$. If
> $
> \sum_{n \in \nat}\mu(E_n) < \infty
> $
> then
> $
> \mu\paren{\limsup_{n \to \infty}E_n} = 0
> $
> *Proof*. Recall that
> $
> \limsup_{n \to \infty}E_n = \bigcap_{n \in \nat}\bigcup_{k \ge n}E_k \subset \bigcap_{n \ge N}\bigcup_{k \ge n}E_k \quad \forall N \in \nat
> $
> Since the sum is finite, for any $\varepsilon > 0$, there exists $N \in \nat$ such that $\sum_{n \ge N}\mu(E_n) < \varepsilon$. By monotonicity and subadditivity
> $
> \begin{align*}
> \mu\paren{\limsup_{n \to \infty}E_n} &\le \mu\paren{\bigcap_{n \ge N}\bigcup_{k \ge n}E_k} \\
> &\le \mu\paren{\bigcup_{k \ge N}E_k} \\
> &\le \sum_{k \ge N}\mu(E_k) < \varepsilon
> \end{align*}
> $
> As this applies for all $\varepsilon > 0$, $\mu\paren{\limsup_{n \to \infty}E_n} = 0$.
> [!theoremb] Second Borel-Cantelli Lemma
>
> Let $(\Omega, \cf, \mathbf{P})$ be a [[Probability|probability space]], and $\seq{E_n} \subset \cf$ be [[Probabilistic Independence|mutually independent]] events. If
> $
> \sum_{n \in \nat}\bp\bracs{E_n} = \infty
> $
> then $\bp\bracs{\limsup_{n \to \infty}E_n} = 1$.
>
> *Proof*. By definition of the limits,
> $
> \paren{\limsup_{n \to \infty}E_n}^c = \liminf_{n \to \infty}(E_n^c) = \bigcup_{n \in \nat}\bigcap_{k \ge n}E_k^c
> $
> By subadditivity
> $
> \bp\bracs{\bracs{\limsup_{n \to \infty}E_n}^c} \le \sum_{n \in \nat}\bp\bracs{\bigcap_{k \ge n}E_k^c}
> $
> and it's sufficient to show that all summands on the right are zero.
>
> Denote $p_n = \bp\bracs{E_n}$, then by monotonicity and mutual independence,
> $
> \bp\bracs{\bigcap_{k \ge n}E_k^c} \le \bp\bracs{\bigcap_{k = n}^NE_k^c} = \prod_{k = n}^N(1 - p_k) \quad \forall N \in \nat
> $
> Since $1 - p_n \le e^{-p_n}$,
> $
> \bp\bracs{\bigcap_{k \ge n}E_m^c} \le \prod_{k \ge n}(1 - p_k) \le e^{-\sum_{k \ge n}p_n} = 0
> $