> [!definition]
>
> $\Gamma(\alpha) \equiv \int_{0}^{\infty}e^{-x}x^{\alpha - 1}dx \equiv (\alpha - 1)!$
>
> The Gamma [[Function|Function]] is the extension of the factorial operation from natural numbers to all complex numbers.
> [!theoremb] Derivation
>
> For all non-negative whole numbers $n$,
> $
> n! = \int_{0}^{\infty}e^{-x}x^n dx
> $
>
> *Proof* by [[Axiom of Induction|induction]]: Observe that when $n = 0$,
> $
> \int_{0}^{\infty}e^{-x}dx = 1 = 0!
> $
>
> Suppose that the result holds for some $n$, then:
> $
> \begin{align*}
> \int_{0}^{\infty}e^{-x}x^{n + 1}dx &= \paren{-e^{-x}x^{n + 1}}|_{0}^{\infty} + \int_{0}^{\infty}e^{-x}(n + 1)x^{n}dx\\
> &= (n + 1)\int_{0}^{\infty}e^{-x}x^{n}dx \\
> &= (n + 1)n! = (n + 1)!
> \end{align*}
> $
>
> Since $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$, and that $\Gamma(1) = 0!$, $\Gamma(\alpha) = (\alpha - 1)!$.