Let $M \in \mathfrak{M}_1(\real^d)$ be a $\sigma$-finite [[Measure Space|measure]] with $M(\bracs{0}) = 0$ and
$
\int \min\bracs{\abs{x}, 1} dM(x) < \infty
$
> [!theorem]
>
> Let $j(t, dy, \omega)$ be the [[Jump Measure|jump measure]] driven by $M$, then for any $t \ge 0$ and almost every $\omega$,
> $
> V_t(\omega) = \int_{\real^d} \abs{y}j(t, dy, \omega) < \infty \quad \forall t \ge 0
> $
> Since $V_t(\omega)$ is a non-decreasing function of $t$, the conditions $\forall t \ge 0$ and $\forall \omega$ can be interchanged.
>
> *Proof*. Let $A_0 = \ol{B(0, 1)}^c$ and $A_k = \ol{B(0, 2^{k + 1})}$, $M_k = M|_{A_k}$, and $X^{k}$ be independent compound Poisson processes for $\pi_{0, 0, M_k}$, then
> $
> V_t(\omega) = \int_{\real^d}\abs{y}j(t, dy, \omega) = \sum_{k = 0}^\infty\int \abs{y}j(t, dy, X^{(k)}(\omega))
> $
> It's sufficient to show that $\sum_{k = 1}^\infty \int \abs{y}j(t, dy, X^{(k)}(\omega))$ because the first term is finite almost surely. By the [[Monotone Convergence Theorem]],
> $
> \begin{align*}
> \ev\braks{V_t} &= \sum_{k = 1}^\infty \int \abs{y}j(t, dy, X^{(k)}(\omega)) \\
> &= \sum_{k = 1}^\infty \ev\braks{\norm{X^{(k)}_t}_{V}} \\
> &= \sum_{k = 1}^\infty \int_{\real^d}\abs{y}dM_k(y) = \int_{\real^d}\abs{y}dM(y) < \infty
> \end{align*}
> $
> [!theorem]
>
> Let $j(t, dy, \omega)$ be the [[Jump Measure|jump measure]] driven by $M$, then
> $
> X_t(\omega) = \int_{\real^d}{y}j(t, dy, \omega)
> $
> is well-defined for all $t \ge 0$. For each $K \ge 1$, let $X^{(k)}$ be independent compound Poisson processes associated with $\pi_{0, 0, M_k}$, then
> $
> S_t^{(K)} = \sum_{k = 0}^K \int_{\real^d}yj(t, dy, X^{(k)})
> $
> with $S_t^{(K)} \to X_t$ by the previous theorem with $V_t(\omega) = \norm{X(\omega)|_{s \le t}}_{V}$. Furthermore, there exists a subsequence $S_t^{(K_n)}$ that converges to $X_t$, uniformly on compact sets of $t$.
>
> *Proof*. As $S_t^{(K_n)}$ is a [[Lévy Process]] with RCLL sample paths, $X_t$ also has RCLL sample paths. Since $M$ is in $\mathfrak{M}_1$, $\int_{B(0, 1)}\abs{y}dM(y) < \infty$. By partitioning into annuli, there exists a subsequence $\seq{k_n}$ such that
> $
> \int_{\ol{B(0, 2^{-k_n})} \setminus B(0, 2^{-k_{n+1}})} \abs{y}dM(y) < 2^{-n}
> $
> for each $n \in \nat$. For all $t \ge 0$ with $r \in [0, t]$,
> $
> \begin{align*}
> \abs{S_s^{(K_n)} - S_{s}^{(K_{n+1})}} &\le \sum_{j = k_n+1}^{k_{n+1}}\int_{\real^d}\abs{y}j(t, dy, X^{(j)}) \\
> \norm{S_s^{(K_n)} - S_{s}^{(K_{n+1})}}_{u, [0, t]}&= \sum_{j = k_n+1}^{k_{n+1}}\int_{\ol{B(0, 2^{-k_n})} \setminus \ol{B(0, 2^{-k_{n+1}})}} \abs{y}j(t, dy)
> \end{align*}
> $
> Now, by [[Markov's Inequality]],
> $
> \begin{align*}
> \bp\braks{\norm{S_s^{(K_n)} - S_{s}^{(K_{n+1})}}_{u, [0, t]} > 2^{-n/2}} &\le 2^{-n/2}\int_{\ol{B(0, 2^{-k_n})} \setminus \ol{B(0, 2^{-k_{n+1}})}}\abs{y}dM(y) \\
> &\le 2^{-n}
> \end{align*}
> $
> By the [[Borel-Cantelli Lemmas|first Borel-Cantelli lemma]], the uniform norms converge absolutely, so
> $
> \sum_{n = 1}^\infty \norm{S_s^{(K_n)} - S_{s}^{(K_{n+1})}}_{u, [0, t]} < \infty
> $
> [!theorem]
>
> The process
> $
> X_t(\omega) = \int_{\real^d}{y}j(t, dy, \omega)
> $
> is a [[Lévy Process]] associated with $\pi_{0, 0, M}^{(1)}$.
>
> *Proof*. Let $0 \le r \le s \le l$ and $\xi_1, \xi_2 \in \real^d$, then
> $
> \begin{align*}
> &\ev\braks{e^{i\angles{\xi_1, X_r}}e^{i\angles{\xi_2, X_{r - s}}}} \\
> &= \limv{k}\ev\braks{e^{i\angles{\xi_1, S_r^{(k)}}}e^{i\angles{\xi_2, S_{r - s}^{(k)}}}}\\
> &= \limv{k}\exp\braks{r\int_{\real^d}e^{i\angles{\xi_1, x}} - 1 dM_k(x)} \\
> &\times \exp\braks{(t - s)\int_{\real^d}e^{i\angles{\xi_2, x}}dM_k(x)}
> \end{align*}
> $