> [!theorem]
>
> Let $X \in L^2$ be a one-dimensional [[L2 Martingale|square integrable]] $\bracs{\cf_t}$-[[Martingale|martingale]] with continuous sample paths such that
> 1. $X_0 = 0$
> 2. $\angles{X}$ has **strictly** increasing sample paths.
> 3. $\angles{X}_t \to \infty$ as $t \to \infty$.
>
> then there exists a [[Filtration|filtration]] $\bracs{\mathcal G_t}$ and a [[Stochastic Process|stochastic process]] $B_t$, progressively measurable with respect to $\bracs{\mathcal G_t}$, such that
> 4. $B_t$ is the standard [[Brownian Motion]].
> 5. $X_t = B_{\angles{X}_t}$.
>
> *Proof*. Since $\angles{X}$ has strictly increasing sample paths, each sample path is invertible. Let $Z(\omega)$ be the inverse of $\angles{Z}(\omega)$, then $Z(\omega)$ is strictly increasing and $Z(\omega)(t) \to \infty$ as $t \to \infty$. Moreover, if $0 \le s \le t$,
> $
> \bracs{\omega \in \Omega: Z_s(\omega)\le t} = \bracs{\omega \in \Omega: \angles{X}(\omega)_t \le s} \in \cf_t
> $
> So $Z_s$ is a stopping time with respect to $\bracs{\cf_t}$, and $\mathcal G_s = \cf_{Z_s}$ is a filtration.
>
> Let $\omega \in \Omega$, and define $B_s(\omega) = X_{Z_s(\omega)}(\omega)$, then $B_s$ is $\mathcal G_s$-measurable. Since for each $\omega \in \Omega$, $B_t$ has continuous sample paths and is progressively measurable with respect to $\mathcal G_s$. From here, it's sufficient to check that $B_s$ and $B_s^2 - s$ are martingales.
>
> Let $t \ge 0$, then
> $
> B_s = X_{Z_s} = \limv{T}X_{T \wedge Z_s}
> $
> and by the [[Monotone Convergence Theorem for Sequences|monotone convergence theorem]],
> $
> \begin{align*}
> \ev\braks{\sup_{0 \le t \le Z_s}X_t^2} &= \limv{T}\ev\braks{\sup_{0 \le t \le Z_s \wedge T}X_t^2} \\
> &\le \limv{T}\ev\braks{\sup_{0 \le t \le Z_s}X_{t \wedge T}^2}
> \end{align*}
> $
> since $X_{t \wedge T}^2$ is a submartingale,
> $
> \begin{align*}
> \ev\braks{\sup_{0 \le t \le Z_s}X_t^2} &= \limv{T}2\int_0^\infty r\bp\bracs{\sup_{0 \le t \le eZ_s}X_{t \wedge T}^2}dr \\
> &\le \limv{T}4\ev\braks{X_{T \wedge Z_s}^2} = \limv{T}4\ev\braks{\angles{X}_{T \wedge Z_s}} \\
> &\le 4s
> \end{align*}
> $
> by passing through [[Hunt's Theorem]]. Thus $B_s$ is square integrable, with
> $
> \abs{X_{T \wedge Z_s} - B_s}^2 \le C\braks{\sup_{t \in [0, Z_s]}X_t^2 + B_s^2} \in L^1
> $
> By [[Dominated Convergence Theorem]], $X_{T \wedge Z_s} \to B_s$ as $T \to \infty$ in $L^2$.
>
> Let $A \in \mathcal G_s$, then for any $T \ge 0$, $A \cap \bracs{Z_s \le T} \in \cf_{T \wedge Z_s}$. By Hunt's Theorem, if $r \ge s$,
> $
> \begin{align*}
> \ev\braks{X_{Z_r \wedge T}| \cf_{Z_s \wedge T}} &= X_{Z_s \wedge T} \\
> \ev\braks{X_{Z_r \wedge T}^2 - \angles{X}_{Z_r \wedge T}| \cf_{Z_s \wedge T}} &= X_{Z_s \wedge T} - \angles{X}_{Z_s \wedge T}
> \end{align*}
> $
> so
> $
> \begin{align*}
> \ev\braks{X_{Z_r \wedge T}; A \cap \bracs{Z_s \le T}} &= \ev\braks{X_{Z_s \wedge T}; A \cap \bracs{Z_s \le T}} \\
> \ev\braks{X_{Z_r \wedge T}^2 - \angles{X}_{Z_r \wedge T}; A \cap \bracs{Z_s \le T}} &= \ev\braks{X_{Z_s \wedge T} - \angles{X}_{Z_s \wedge T}; A \cap \bracs{Z_s \le T}}
> \end{align*}
> $
> Sending $T \to \infty$ over the dominated convergence theorem yields that
> $
> \begin{align*}
> \ev\braks{B_r; A} &= \ev\braks{B_s ; A} \\
> \ev\braks{X_{Z_r \wedge T}^2 - \angles{X}_{Z_r \wedge T}; A} &= \ev\braks{X_{Z_s \wedge T} - \angles{X}_{Z_s \wedge T}; A}
> \end{align*}
> $
> which yields the desired conditional expectations.
> [!theorem]
>
> If $X$ satisfies the requirements of the above theorem, then
> $
> 1 = \limsup_{t \to \infty}\frac{X_t}{\sqrt{2\angles{X}_t\ln\ln\angles{X_t}}} = - \liminf_{t \to \infty}\frac{X_t}{\sqrt{2\angles{X}_t\ln\ln\angles{X_t}}}
> $