> [!definition]
>
> Let $\bracs{X_t}$ be a one-dimensional $\bracs{\cf_t}$-[[Martingale|martingale]]. $X \in L^2$ if $X_t \in L^2$ for all $t \ge 0$. In which case, $X_t^2$ is a non-negative $\bracs{\cf_t}$-submartingale.
>
> By the [[Doob-Meyer Decomposition]], there exists a stochastic process $\angles{X}$ such that $X_t^2 - \angles{X}_t$ is a martingale, where $\angles{X}$ is previsible and has non-decreasing RCLL sample paths, known as the **predictable quadratic variation** of $X$.
> [!theorem]
>
> Let $B_t$ be the standard [[Brownian Motion]] on $\real$, then $B_t^2 - t$ is a martingale, so $\angles{B}_t = t$ is the predictable quadratic variation of $B$.
> [!theorem]
>
> If $X \in L^2$ is a one-dimensional square integrable martingale. Suppose that $X_0 = 0$ and $\angles{X}_t = t$, then $X$ is the standard Brownian motion.
> [!theorem]
>
> Let $N_t$ be the [[Simple Poisson Jump Process|simple Poisson jump process]] with parameter $1$, then $N_t - t$ is a martingale. From here, let $s < t$, then
> $
> \begin{align*}
> \ev\braks{(N_t - t)^2|\cf_s} &= (N_s - s)^2 + (t - s)
> \end{align*}
> $
> so $(N_t - t)^2 - t$ is a martingale, and $\angles{N}_t = t$ is the predictable quadratic variation of $N_t$.
> [!theorem]
>
> Let $\bracs{X_t}, \bracs{Y_t}$ be $L^2$, $\bracs{\cf_t}$-martingales with [[RCLL]] sample paths, then their linear combinations are also $L^2$ $\bracs{\cf_t}$martingales. Define
> $
> \angles{X, Y}_t = \frac{1}{4}\paren{\angles{X + Y}_t - \angles{X - Y}_t}
> $
> as their **predictable cross variation**. The mapping $\angles{\cdot, \cdot}$ is symmetric and bilinear on the space of $L^2$ martingales.
> 1. $\angles{X, Y}_0 = 0$.
> 2. $\angles{X, Y}$ is RCLL.
> 3. $\angles{X, Y}$ has locally bounded variation.
> 4. $\angles{X, Y}_t$ is $\cf_{t^-}$-measurable.
> [!theorem]
>
> $X_tY_t - \angles{X, Y}_t$ is a martingale.
>
> *Proof*.
> $
> \begin{align*}
> \ev\braks{X_tY_t|\cf_s} &= \frac{1}{4}\ev\braks{(X_t + Y_t)^2 - (X_t - Y_t)^2|\cf_s} \\
> &= \frac{1}{4}\ev\braks{(X_t + Y_t)^2 - \angles{X + Y}_t - (X_t - Y_t)^2 + \angles{X - Y}_t|\cf_s} \\
> &+ \angles{X, Y}_t \\
> &= \frac{1}{4}(X_s + Y_s)^2 - \angles{X + Y}_s - (X_s - Y_s)^2 + \angles{X - Y}_s + \angles{X, Y}_t
> \end{align*}
> $