> [!definition]
>
> $
> \begin{align*}
> R_{j} = {-1, 1} &\quad p(-1) = p(1) = \frac{1}{2} \\
> \ev{(X)} = 0 &\quad \var{X} = 1^2 \times 0.5 + (-1)^2 \times 0.5 = 1 \\
> S(n) &= X_{1} + X_{2} + \cdots X_{n} \\
> R_{S(n)} &= \{-n, -n + 2, ..., n - 2, n\}\\
> \ev{(S(n))} = 0 &\quad \var{S(n)} = n
> \end{align*}
> $
> A simple random walk is a [[Random Walk|random walk]] with $p = q = 0.5$.
> [!theorem] [[Probability]] of landing on a position $x$ after $n$ steps
>
> $
> P(S(n) = x) = {n \choose (n + x)/2}\paren{\frac{1}{2}}^n
> $
>
> *Proof*.
>
> Consider $(X_j = 1)$ as a "success" and $(X_j = -1)$ as a "failure".
> $
> P(S(n) = x) = P(\mathrm{successes - failures} = x)
> $
> Since successes and failures also add up to the number of steps $n$, setup the following [[Linear System|linear system]] and solve:
> $
> \begin{align*}
> \mathrm{successes + failures} = n \\
> \mathrm{successes - failures} = x \\
> \mathrm{successes} = \frac{n + x}{2} \\
> \mathrm{failures} = \frac{n - x}{2}
> \end{align*}
> $
>
> Convert the problem into calculating the probability of $x$ successes in $n$ attempts and use the [[Binomial Random Variable|binomial distribution]]:
> $
> \begin{align*}
> P(\mathrm{successes - failures} = x) &= P\paren{\mathrm{successes} = \frac{n + x}{2}} \\
> &= P\paren{B\paren{n, \frac{1}{2}} = \frac{n + x}{2}} \\
> &= {n \choose (n + x)/2}\paren{\frac{1}{2}}^n
> \end{align*}
> $