> [!definition]
>
> Let $X$ be a discrete [[Random Variable|random variable]] taking non-negative integer values. Then the **probability generating function** of $X$ is
> $
> G_X(z) = \ev(z^X) = \sum_{n =1}^{\infty}z^nP(X = n)
> $
> [!theorem] Factorisation Property
>
> Let $\bracs{X_i}_1^n$ be a sequence of [[Probabilistic Independence|independent]] random variables with PGFs. Then
> $
> G_{\sum_{i}X_i}(z) = \ev\paren{z^{\sum_i X_i}} =
> \prod_{i}\ev(z^{X_i}) = \prod_{i}G_{X_i}(z)
> $
> [!theorem]
>
> Let $X$ be a [[Random Variable|random variable]] with a PGF. Then its PGF has a radius of convergence of at least 1.
> [!theorem]
>
> Let $X$ be a random variable with a PGF. Then
> $
> P(X = k) = \frac{\frac{d^{k}G_X(z)}{dz^{k}}(0)}{k!}
> $
> *Proof*. Since
> $
> G_X(z) = \sum_{n = 0}^{\infty}z^{n}P(X = n)
> $
> We have
> $
> \frac{d^{k}}{dz^{k}}G_X(z) = \sum_{n = k}^{\infty}n(n-1) \cdots(n - k + 1) \cdot z^{n - k}P(X = n)
> $
> and
> $
> \paren{\frac{d^{k}}{dz^{k}}G_X(z)}(0)= k! P(x = k)
> $
> [!theorem]
>
> Let $X$ be a random variable with a PGF, then
> $
> \frac{d^{k}G_X}{dz^{k}}(1) = \ev(X(X - 1)(X - 2) \cdots (X - k + 1))
> $
> where the right-hand side is the $k$-th **factorial moment** of $X$.
>
> *Proof*.
> $
> \begin{align*}
> \frac{d^kG_X}{dz^k} &= \sum_{n = k}^{\infty}n(n - 1) \cdots (n - k + 1)z^{n - k}P(X = n) \\
> \frac{d^kG_X}{dz^k}(1) &= \sum_{n = k}^{\infty}n(n - 1) \cdots (n - k + 1)P(X = n) \\
> &= \ev(X(X - 1)(X - 2) \cdots (X - k + 1))
> \end{align*}
> $