> [!definition]
>
> Let $U \subset \real^n$ be [[Open Set|open]] and bounded. The [[Boundary|boundary]] $\partial U$ is of class $C^k$ if for each $x \in \partial U$, there exists $r > 0$ and a $C^k$ map $\gamma: \real^{n - 1} \to \real$ such that (reorienting if necessary),
> $
> U \cap B(x, r) = \bracs{y \in B(x, r): y_n > \gamma(y_1, \cdots, y_{n - 1})}
> $
>
> This is equivalent to saying that $\ol U$ is a $C^1$-[[Manifold|manifold]].
> [!theorem]
>
> Let $U \subset \real^n$ with $\partial U \in C^1$. Let $x_0 \in \partial U$, $r > 0$ and $\gamma: \real^{n - 1} \to \real$ such that
> $
> U \cap B(x_0, r) = \bracs{y \in B(x, r): y_n > \gamma(y_1, \cdots, y_{n - 1})}
> $
> then there exists $\lambda, t' > 0$ such that for any $x \in B(x_0, r/2)$ and $t \in (0, t')$,
> $
> x_t = x + \lambda t e_n \quad B(x_t, t) \subset U \cap B(x_0, r) = V
> $
> *Proof*. There are two constraints, $B(x_t, t) \subset B(x_0, r)$ and $y_n > \gamma(y_1, \cdots, y_{n - 1})$ for all $y \in B(x_t, t)$. For any $y \in B(x_t, t)$,
> $
> \begin{align*}
> \norm{y - x_0} &\le \norm{y - x_t} + \norm{x_t - x} + \norm{x - x_0} \\
> &\le t + \lambda t + r/2
> \end{align*}
> $
> For the distance constraint to work, we must have $(\lambda + 1)t < r/2$. For the second constraint, first let $y \in B(0, t)$, then
> $
> (x_t + y)_n = x_n + t\lambda + y_n > x_n + t(\lambda - 1)
> $
> On the other hand, since $\gamma \in C^1$, $\gamma|_{\pi_{1, \cdots, n - 1}(\ol{V})}$ is Lipschitz continuous. Let $L \ge 0$ be its Lipschitz constant, then since $x_t$ has the same first $n - 1$ components as $x$,
> $
> \begin{align*}
> \abs{\gamma(x_t + y)_{1, \cdots, n - 1} - \gamma(x_{1, \cdots, n - 1})} &= \abs{\gamma(x + y)_{1, \cdots, n - 1} - \gamma(x_{1, \cdots, n - 1})} \\
> &\le L \cdot \norm{y} < tL \\
> \gamma((x_t + y)_{1, \cdots, n - 1}) &< tL + x_n
> \end{align*}
> $
> This yields the constraints
> $
> \lambda - 1 > L \quad t(\lambda + 1) < r/2
> $
> Let $\lambda > L + 1$ and $t' < r/\braks{2(\lambda + 1)}$ yields the desired result.