> [!definition]
>
> Let $(X, d)$ be a [[Metric Space|metric space]] and $f: X \to X$ be a [[Function|function]]. $f$ is a **contractor** if $\exists 0 \le k < 1$ such that
> $
> d(f(x), f(y)) \le kd(x, y) \quad \forall x, y \in X
> $
> The minimum possible value of $k$ is called the **Lipschitz constant** of $f$.
> [!theorem]
>
> Let $(X, d)$ be a metric space and $f: X \to X$ be a contractor, then $f$ is uniformly continuous.
>
> *Proof*. Let $L$ be the Lipschitz constant of $f$, $\varepsilon > 0$, and $\delta = \varepsilon/2L$, then for any $x, y \in X$ with $d(x, y) < \delta$, $d(f(x), f(y)) \le \varepsilon/2 < \varepsilon$.
> [!theoremb] Banach Fixed-Point Theorem
>
> Let $(X, d)$ be a [[Complete Metric Space|complete]] metric space and $f: X \to X$ be a contractor, then there exists a unique $x \in X$ such that
> 1. $x$ is a fixed point.
> 2. $\limv{n}f^n(y) = x$ for all $y \in X$.
>
> ### Existence
>
> For any $y \in Y$, let $y_n = f^n(x)$, then $\limv{n}y_n$ exists.
>
> *Proof.* Let $L$ be the Lipschitz constant of $f$, then for any $n \in \nat$,
> $
> d(y_n, y_{n + 1}) = L^nd(y, y_1)
> $
> which means that for any $m, n \in \nat$ with $m \le n$,
> $
> \begin{align*}
> d(y_m, y_n) &\le \sum_{k = m}^{n - 1}d(y_k, y_{k + 1}) \\
> &\le \sum_{k = m}^{n - 1}L^kd(y, y_1) \\
> &\le d(y, y_1) \cdot \sum_{k \ge m}L^k \\
> \end{align*}
> $
> which goes to $0$ with $m \to \infty$. Therefore $\seq{y_n}$ is a [[Cauchy Sequence|Cauchy sequence]] and has a limit.
>
> ### Uniqueness
>
> For any $x, y \in X$, $\limv{n}f^n(x) = \limv{n}f^n(y)$.
>
> *Proof*. Since $f$ is a contractor $\limv{n}d(f^n(x), f^n(y)) = 0$ and the limit point is unique.
>
> ### Fixed
>
> Let $x \in X$, then $y = \limv{n}f^n(x)$ is a fixed point of $f$.
>
> *Proof*. Since $f$ is uniformly continuous,
> $
> y = \limv{n}f^n(y) = f\paren{\limv{n}f^{n - 1}(y)} = f(y)
> $