> [!definitionb] Definition
>
> Let $(M, d)$ be a [[Metric Space|metric space]]. $M$ is **complete** if the [[Limit|limit]] of every [[Cauchy Sequence|Cauchy sequence]] in $M$ is also in $M$.
> [!theorem]
>
> Complete metric spaces are cool :)
>
> *Proof by Staring*. Obvious.
> [!theorem]
>
> Let $(X, d)$ be a metric space and let $X^\prime$ be the set of Cauchy sequences in $X$. For $(x_n), (y_n) \in X^\prime$, define
> $
> d^\prime((x_n), (y_n)) = \limv{n} d(x_n, y_n)
> $
> Then $d^\prime$ is a pseudometric on $X^\prime$.
>
> *Proof*. First, if $(x_n) = (y_n)$, then $d(x_n, y_n) = 0$ for all $n \in \nat$ and $\limv{n}d(x_n, y_n) = 0$. Therefore $d^\prime((x_n), (y_n)) = 0$.
>
> Using the symmetry of $d$, $d(x_n, y_n) = d(y_n, x_n)$ means that
> $
> d^\prime((x_n), (y_n)) = \limv{n}d(x_n, y_n) = \limv{n}d(y_n, x_n) = d^\prime((y_n), (x_n))
> $
>
> Let $(x_n), (y_n), (z_n) \in X^\prime$, then
> $
> d(x_n, z_n) \le d(x_n, y_n) + d(y_n, z_n)
> $
> and by the [[Order Limit Theorem|order limit theorem]]
> $
> \limv{n}d(x_n, z_n) \le \limv{n}d(x_n, y_n) + \limv{n}d(y_n, z_n)
> $
> which means
> $
> d^\prime((x_n), (z_n)) \le d^\prime((x_n), (y_n)) + d^\prime((y_n), (z_n))
> $
> [!theorem]
>
> Let $(x_n), (y_n) \in X^\prime$. Then $(x_n) \sim (y_n)$ if $d^\prime((x_n), (y_n)) = 0$. This is an [[Equivalence Relation|equivalence relation]]. Let $\hat X$ be the set of [[Equivalence Class|equivalence classes]] and define $\hat d$ to be the $d^\prime$ distance between the representatives of the classes. Then $\hat d$ is a well-defined metric on $\hat X$.
>
> *Proof*. Since $d^\prime((x_n), (x_n)) = 0$, $(x_n) \sim (x_n)$.
>
> As $d^\prime((x_n), (y_n)) = d^\prime((y_n), (x_n))$,
> $
> d^\prime((x_n), (y_n)) = 0 \Leftrightarrow d^\prime((y_n), (x_n)) = 0
> $
> $(x_n) \sim (y_n) \Leftrightarrow (y_n) \sim (x_n)$, the relation is symmetric.
>
> If $(x_n) \sim (y_n)$ and $(y_n) \sim (z_n)$, then
> $
> 0 \le d^\prime((x_n), (z_n)) \le d^\prime((x_n), (y_n)) + d^\prime((y_n), (z_n)) = 0
> $
> $d^\prime((x_n), (z_n)) = 0$ and $(x_n) \sim (z_n)$, the relation is transitive. Therefore $~$ is an equivalence relation.
>
> Let $x, y \in X^\prime$ and $[x], [y]$ be their respective equivalence classes. Define $\hat d([x], [y]) = d^\prime(x, y)$.
>
> We first show that this is a well-defined function. Let $[x], [y]$ be equivalence classes and let $x_1, x_2 \in [x]$, $y_1, y_2 \in [y]$. Then
> $
> d^\prime(x_1, y_2) \le d^\prime(x_1, y_1) + d^\prime(y_1, y_2) = d^\prime(x_1, y_1)
> $
> and
> $
> d^\prime(x_1, y_1) \le d^\prime(x_1, y_2) + d^\prime(y_1, y_2) = d^\prime(x_1, y_2)
> $
> meaning that
> $
> d(x_1, y_1) = d(x_1, y_2)
> $
> Applying the same idea to varying $x_1$ and $x_2$ we have
> $
> \begin{align*}
> d^\prime(x_1, y_1) &\le d^\prime(x_2, y_1) + d^\prime(x_1, x_2) = d^\prime(x_2, y_1) \\
> d^\prime(x_2, y_1) &\le d^\prime(x_1, y_1) + d^\prime(x_1, x_2) = d^\prime(x_1, y_1) \\
> d^\prime(x_1, y_1) &= d^\prime(x_2, y_1)
> \end{align*}
> $
> Therefore $\hat d([x], [y])$ is well-defined.
>
> Since $[x]$ is an equivalence class, for any $x_1, x_2 \in [x]$, $d^\prime(x_1, x_2) = 0$ and therefore $\hat d([x], [x]) = 0$.
>
> Suppose that $\hat d ([x], [y]) = 0$, then
> $
> \exists x \in [x], y \in [y]: d^\prime(x, y) = 0 \Rightarrow x \sim y \Rightarrow [x] = [y]
> $
>
> Using the symmetry of $d^\prime$,
> $
> \hat d([x], [y]) = d^\prime(x, y) = d^\prime(y, x) = \hat d([y], [x])
> $
> $\hat d$ is also symmetric.
>
> Let $[x], [y], [z] \in \hat X$, then
> $
> \hat d([x], [z]) = d^\prime(x, z) \le d^\prime(x, y) + d^\prime(y, z) = \hat d([x], [y]) + \hat d([y], [z])
> $
> $\hat d$ satisfies the triangle inequality.
>
> Therefore $\hat d$ is a metric on $\hat X$.
> [!theoremb] Theorem
>
> The [[Metric Space|metric space]] $(\hat X, \hat d)$ is complete.
>
> *Proof*. Let $([(x_n)]_m)$ be a Cauchy sequence in $\hat X$ and let $((x_n)_m)$ be a Cauchy sequence of Cauchy sequences in $X$ (a sequence of representatives). Denote the $n$-th element of the $m$-th sequence as $x_{n, m}$.
>
> Since each $(x_n)_m$ is a Cauchy sequence,
> $
> \forall \varepsilon > 0, \exists N_m \in \nat: d(x_{a,m}, x_{b,m}) < \varepsilon \forall a, b \ge N_m
> $
> Let $k \in \nat$, $\varepsilon = \frac{1}{5k}$, then
> $
> \exists N_{m,k} \in \nat: d(x_{a, m}, x_{b, m}) < \varepsilon \forall a, b \ge N_{m,k}
> $
> and take $n_{k,m}$ such that $n_{k,m} \ge N_{m,k}$ and $n_{k,m} > n_{k - 1,m}$. Then $(x_{n_{k,m}})_m$ is a subsequence of $(x_n)_m$ that satisfies
> $
> d(x_{n_a, m}, x_{n_b, m}) < \frac{1}{5k} \quad \forall k > 0,\ a, b \ge k
> $
> which is also Cauchy.
>
> As $((x_{n_{k,m}})_m)$ is a Cauchy sequence of Cauchy sequences,
> $
> \forall \varepsilon > 0, \exists N_{out} \in \nat: d^\prime((x_{n_{k,a}})_a, (x_{n_{k,b}})_b) < \varepsilon \forall a, b \ge N_{out}
> $
> Similarly, let $l \in \nat$, $\varepsilon = \frac{1}{5l}$, then
> $
> \exists N_{l} \in \nat: d^\prime((x_{n_{k,a}})_a, (x_{n_{k,b}})_b) < \frac{1}{5l} \forall a, b \ge N_{l}
> $
> Take $m_l$ such that $m_l \ge N_l$ and $m_{l} > m_{l - 1}$. Then update the notation because there are so many subscripts, and
> $
> ((x_{n_{k, m_l}})_{m_l}) = ((x[n_{k, m_l}])_{m_l})
> $
> is a Cauchy subsequence that satisfies
> $
> d^\prime((x[n_{k, m_a}])_{m_a}, (x[n_{k, m_b}])_{m_b}) < \frac{1}{5l} \quad \forall l > 0,\ a, b \ge l
> $
> Since $d^\prime((x[n_{k, m_a}])_{m_a}, (x[n_{k, m_b}])_{m_b}) = \limv{n}d(x[n_{k, m_a}, m_a], x[n_{k, m_b}, m_b])$ comes from a Cauchy sequence of real numbers. But as
> $
> d(x[n_{g, m_a}, m_a], x[n_{h, m_a}, m_a]) < \frac{1}{5k} \forall g, h \ge k
> $
> we have
> $
> \limv{g}d(x[n_{g, m_a}, m_a], x[n_{h, m_a}, m_a]) \le \frac{1}{5k} \forall h \ge k
> $
> Then if $a, b \ge l$
> $
> \begin{align*}
> d(x[n_{k, m_a}, m_a], x[n_{k, m_b}, m_b]) &\le \limv{h}d(x[n_{k, m_a}, m_a], x[n_{h, m_a}, m_a]) \\
> &+\limv{h}d(x[n_{k, m_b}, m_b], x[n_{h, m_b}, m_b]) \\
> &+ \limv{h}d(x[n_{h, m_a}, m_a], x[n_{h, m_b}, m_b]) \\
> &\le \frac{1}{5k} + \frac{1}{5k} \\
> &+ d^\prime((x[n_{k, m_a}])_{m_a}, (x[n_{k, m_b}])_{m_b}) \\
> &< \frac{2}{2k} + \frac{1}{5l}
> \end{align*}
> $
>
> Let $l = k$, and consider the sequence $(x[n_{k, m_k}, m_k])$ (with all terms depending on $k$). Then for any $a, b > k$
> $
> \begin{align*}
> d(x[n_{a, m_a}, m_a], x[n_{b, m_b}, m_b]) &\le
> d(x[n_{k, m_a}, m_a], x[n_{a, m_a}, m_a]) \\
> &+ d(x[n_{k, m_b}, m_b], x[n_{b, m_b}, m_b]) \\
> &+ d(x[n_{k, m_a}, m_a], x[n_{k, m_b}, m_b]) \\
> &< \frac{1}{5k} + \frac{1}{5k} + \frac{2}{5k} + \frac{1}{5l} \\
> &= \frac{1}{k}
> \end{align*}
> $
> and for any $\varepsilon > 0$, $\exists N > \frac{1}{\varepsilon}$ such that for any $k \ge N$,
> $
> d(x[n_{a, m_a}, m_a], x[n_{b, m_b}, m_b]) < \varepsilon
> $
> and therefore $(x[n_{k, m_k}, m_k])$ is a Cauchy sequence.
>
> Lastly, we show that
> $
> \limv{y}d^\prime((x[n_{k, m_k}, m_k]), (x_n)_y) = 0
> $
> Fix $\varepsilon > 0$, then for $k > \frac{4}{\varepsilon}$,
> $
> d(x[n_{a, m_a}, m_a], x[n_{b, m_b}, m_b]) < \varepsilon/4 \quad \forall a, b \ge k
> $
> We have
> $
> d^\prime((x_n)_g, (x_n)_h) < \varepsilon/4 \quad \forall g, h \ge m_k
> $
> Then since each $(x_n)_y$ is also a Cauchy sequence,
> $
> \begin{align*}
> d(x[n_{a, m_a}, m_k], x[n_{b, m_y}, y]) &\le
> d^\prime((x[n_{a, m_a}, m_k]), (x_n)_y) \forall y \ge m_k, a \ge k\\
> &+ \frac{\varepsilon}{4} + \frac{\varepsilon}{4} < \varepsilon
> \end{align*}
> $
> Since
> $
> \forall \varepsilon > 0, \exists m_k \in \nat:
> d^\prime((x[n_{k, m_k}, m_k]), (x_n)_y)\
> \forall y \ge m_k, a \ge k
> $
> we have
> $
> \limv{y}d^\prime((x[n_{k, m_k}, m_k]), (x_n)_y) = 0
> $
> and $(x[n_{k, m_k}, m_k]) \in \hat X$ is a Cauchy sequence that represents the sequence of Cauchy sequences.