Let $(X, d)$ be a [[Metric Space|metric space]] and $A, C \in \pow{X}$, then the **Hausdorff distance** $H_D$ between $A$ and $C$ is
$
D_H(A, C) = \max\paren{\sup_{x \in A}\inf_{y \in C} d(x, y), \sup_{y \in C}\inf_{x \in A}d(x, y)}
$
# Part A
$
D_H(A, C) = \inf\bracs{r \ge 0: A \subseteq C_r, C \subseteq A_r}
$
where
$
A_r = \bigcup_{x \in A}B(x, r)
$
*Proof*. Denote
$
d_H(A, C) = \inf \bracs{r \ge 0: A \subseteq C_r, C \subseteq A_r}
$
to differentiate the definitions.
Let $r > D_H(A, C)$, then
$
r > \sup_{x \in A} \inf_{y \in C}d(x, y) \quad r > \sup_{y \in C}\inf_{x \in A}d(x, y)
$
meaning that
$
\begin{align*}
r &> \inf_{y \in C}d(x, y) \forall x \in A \\
r &> \inf_{x \in C}d(x, y) \forall y \in C
\end{align*}
$
so
$
\begin{align*}
\forall x \in A, \exists y \in C: d(x, y) &< r \Leftrightarrow x \in B(y, r)\\
\forall y \in C, \exists x \in A: d(x, y) &< r \Leftrightarrow y \in B(x, r)
\end{align*}
$
implying that
$
A \subseteq C_r, C \subseteq A_r
$
and
$
r \in \bracs{r \ge 0: A \subseteq C_r, C \subseteq A_r} \forall r > D_H(A, C)
$
which gives
$
D_H(A, C) \ge \inf \bracs{r \ge 0: A \subseteq C_r, C \subseteq A_r} = d_H(A, C)
$
$D_H$ cannot be strictly less than $d_H$, otherwise $d_H$ is not the infimum.
Now let $r > d_H(A, C)$, then $A \subseteq C_r, C \subseteq A_r$ (otherwise $d_H$ is not the infimum). This means that
$
\begin{align*}
\forall x \in A, \exists y \in C: x \in B(y, r) \Leftrightarrow d(x, y) &< r \\
\forall y \in C, \exists x \in A: y \in B(x, r) \Leftrightarrow d(x, y) &< r
\end{align*}
$
and that
$
\begin{align*}
r &\ge \inf_{y \in C}d(x, y) \forall x \in A \\
r &\ge \inf_{x \in A}d(x, y) \forall y \in C
\end{align*}
$
so
$
r \ge \sup_{x \in A} \inf_{y \in C}d(x, y) \quad r \ge \sup_{y \in C}\inf_{x \in A}d(x, y)
$
and $r \ge D_H(A, C)$ ($D_H$ is a lower bound). Therefore
$
D_H(A, C) \le \inf \bracs{r \ge 0: A \subseteq C_r, C \subseteq A_r} = d_H(A, C)
$
# Part B
Let $A = \bracs{0}$ and $C = (0, \infty)$, then
$
\begin{align*}
\sup_{y \in C}\inf_{x \in A}d(x, y) &= \sup \bracs{\inf_{x \in A}d(x, y): y \in C} \\
&= \sup \bracs{d(0, y): y \in (0, \infty)} \\
&= \sup \bracs{y: y \in (0, \infty)} \\
&= \sup (0, \infty) = \infty
\end{align*}
$
Let $A, C \subseteq \real$, then if $A, C$ are bounded, $D_H(A, C) < \infty$.
Since $A, C$ are bounded,
$
\exists M_A : B(0, M_A) \supseteq A \quad \exists M_C: B(0, M_C) \supseteq C
$
Let $M = \max(M_A, M_C)$, then $B(0, M) \supseteq A, C$ and
$
d(a, c) < d(a, 0) + d(0, c) < 2M \quad \forall a \in A, c \in C
$
so we have
$
\begin{align*}
\sup_{x \in A}\inf_{y \in C} d(x, y) &\le \sup_{x \in A} 2M = 2M < \infty \\
\sup_{y \in C}\inf_{x \in A} d(x, y) &\le \sup_{y \in C} 2M = 2M < \infty
\end{align*}
$
and therefore $D_H(A, C) < \infty$.
# Part C
Let $A, C \subseteq X$, then $D_H(A, C) = 0 \Leftrightarrow \overline{A} = \overline{C}$.
*Proof*. First suppose that $D_H(A, C) = 0$, then
$
A \subseteq C_r, C \subseteq A_r \quad \forall r > 0
$
This means that
$
\forall r > 0, B(a, r) \cap C \ne \emptyset, B(c, r) \cap A \ne \emptyset, \forall a \in A, c \in C
$
therefore $A \subseteq \overline{C} \Rightarrow \overline{A} \subseteq \overline{C}$, $C \subseteq \overline{A} \Rightarrow \overline{C} \subseteq \overline{A}$.
Now suppose that $\overline{A} = \overline{C}$. Then
$
\forall r > 0, B(a, r) \cap C \ne \emptyset, B(c, r) \cap A \ne \emptyset, \forall a \in A, c \in C
$
which means that
$
A \subseteq C_r, C \subseteq A_r \quad \forall r > 0
$
therefore $D_H(A, C) = \inf(0, \infty) = 0$.
# Part D
Let $d(x, A) = \inf \bracs{d(x, a): a \in A}$, then
$
d(x, C) \le d(x, A) + D_H(A, C)
$
*Proof*.
$
\begin{align*}
d(x, C) &= \inf\bracs{d(x, c): c \in C} \\
&\le \inf\bracs{d(x, a) + d(a, c): c \in C} &\forall a \in A\\
&\le d(x, a) + d(a, C) &\forall a \in A \\
&\le d(x, a)
\end{align*}
$
a
$
\begin{align*}
d(x, A) + D_H(A, C) &= d(x, A) \\&+ \max\paren{\sup_{x \in A}\inf_{y \in C} d(x, y), \sup_{y \in C}\inf_{x \in A}d(x, y)} \\
&= d(x, A) + \max\paren{\sup_{a \in A}d(a, C), \sup_{c \in C}d(c, A)} \\
&\ge d(x, A) + \sup d(a, C) \\
&\ge d(x, A) + d(a, C) \quad \forall a \in A \\
\end{align*}
$
Now we know that
$
\forall \varepsilon > 0, \exists a \in A: d(x, A) \le d(x, a) < d(x, A) + \varepsilon
$
which means that $\forall \varepsilon > 0, \exists a \in A:$
$
\begin{align*}
d(x, a) + d(a, C) &< d(x, A) + d(a, C) + \varepsilon \\
d(x, a) + \inf\bracs{d(a, c): c \in C} &< d(x, A) + d(a, C) + \varepsilon \\
\inf\bracs{d(x, a) + d(a, c): c \in C} &< d(x, A) + d(a, C) + \varepsilon \\
\inf\bracs{d(x, c): c \in C} &< d(x, A) + d(a, C) + \varepsilon \\
d(x, C) &< d(x, A) + d(a, C) + \varepsilon
\end{align*}
$
Since $d(x, C) < d(x, A) + d(a, C) + \varepsilon$ for any $\varepsilon > 0$, we can conclude that
$
d(x, C) \le d(x, A) + d(a, C) \le d(x, A) + D_H(A, C)
$