> [!definition]
>
> Let $X$ be a [[Set|set]] of points and
> $
> d: X \times X \to [0, \infty)
> $
> $(X, d)$ is a metric [[Space|space]] if the *metric* [[Function|function]] $d$ satisfies the following axioms for all $x, y \in X$:
> - $d(x, y) \ge 0$ and $d(x, y) = 0 \Leftrightarrow x = y$
> - $d(x, y) = d(y, x)$
> - $d(x, z) \le d(x, y) + d(y, z)$ ([[Triangle Inequality]])
> [!definition]
>
> Let $X = \real^n$ be a [[Normed Vector Space|normed vector space]] in the [[Real Numbers|real numbers]]. Define
> $
> d(x, y) = |x - y|
> $
> then $d$ is a metric.
> [!theorem]
>
> Let $\phi: [0, \infty] \to [0, 1]$ by
> $
> \phi(t) = \begin{cases}
> \frac{t}{t + 1} & t < \infty \\
> 1 &t = \infty
> \end{cases}
> $
> then:
> 1. $\phi$ is strictly increasing with $\phi(t + s) \le \phi(t) + \phi(s)$.
> 2. If $(Y, \rho)$ is a metric space, then $\phi \circ \rho$ is a bounded metric on $Y$ that defines the same topology as $\rho$.
> 3. If $X$ is a [[Topological Space|topological space]], then $\rho(f, g) = \phi(\sup_{x \in X}|f(x) - g(x)|)$ is a metric on $\complex^X$, whose associated topology is the topology of [[Uniform Convergence|uniform convergence]].
> 4. If $X$ is a $\sigma$-compact [[Locally Compact Hausdorff Space|LCH]] space and $\seq{U_n}$ is a [[Sequence|sequence]] of precompact open sets such that $\ol{U_n} \subset U_{n + 1}$, then the function $\rho(f, g) = \sum_{n \in \nat}2^{-n}\phi\paren{\sup_{x \in \ol{U_n}}|f(x) - g(x)|}$ is a metric on $\complex^X$ whose associated topology is the topology of [[Uniform Convergence on Compact Sets|uniform convergence on compact sets]].
>
> *Proof*.
>
> # Inequalities
>
> Let $t \in [0, \infty)$ and $\varepsilon > 0$, then
> $
> \begin{align*}
> \phi(t + \varepsilon) - \phi(t) &= \frac{t + \varepsilon}{1 + t + \varepsilon} - \frac{t}{1 + t} \\
> &= \frac{(t + \varepsilon)(1 + t) - t(1 + t + \varepsilon)}
> {(1 + t + \varepsilon)(1 + t)} \\
> &= \frac{t + \varepsilon + t^2 + t\varepsilon -t - t^2 - t\varepsilon}{(1 + t + \varepsilon)(1 + t)} \\
> &= \frac{\varepsilon}{(1 + t + \varepsilon)(1 + t)} > 0
> \end{align*}
> $
> and
> $
> \begin{align*}
> \phi(t) + \phi(\varepsilon) &= \frac{t}{1 + t} + \frac{\varepsilon}{1 + \varepsilon} \\
> &\ge \frac{t}{1 + t} + \frac{\varepsilon}{(1 + t + \varepsilon)(1 + t)} \\
> &= \phi(t + \varepsilon)
> \end{align*}
> $
>
> # Equivalent Metric
>
> If $(Y, \rho)$ is a metric space, then $\phi \circ \rho$ is a bounded metric on $Y$ that defines the same topology as $\rho$.
>
> *Proof*. Firstly $\phi \circ \rho(x, y) = 0$ if and only if $\rho(x, y) = 0$, if and only if $x = y$. Now,
> $
> \begin{align*}
> \phi(\rho(x, z)) &\le \phi(\rho(x, y) + \rho(y, z)) \le \phi(\rho(x, y)) + \phi(\rho(y, z))
> \end{align*}
> $
> and $\phi \circ \rho$ is a metric.
>
> Let $x \in X$ and $r > 0$, then since $\phi$ is strictly increasing,
> $
> \begin{align*}
> B_{\rho}(x, r) &= \bracs{y \in X: \rho(x, y) < r} \\
> &= \bracs{y \in X: \phi \circ \rho (x, y) < \phi(r)} \\
> &= B_{\phi \circ \rho}(x, \phi(r))
> \end{align*}
> $
> Since $\phi \circ \rho$ generates the open balls that come from $\rho$, $\topo_{\phi \circ \rho} \supset \topo_{\rho}$.
>
> Now, for any $r \in (0, 1)$, $B_{\phi \circ \rho}(x, r) = B_{\rho}(x, \phi^{-1}(r))$, where the inverse is possible since $\phi$ is increasing with range $[0, 1]$. Lastly, for any $r \ge 1$,
> $
> \begin{align*}
> B_{\phi \circ \rho}(x, r) & = \bracs{y \in X: \phi \circ \rho(x, y) < r} \\
> &= \bracs{y \in X: \phi \circ \rho(x, y) < \infty} \\
> &= X
> \end{align*}
> $
> Since $\rho$ generates the open balls that come from $\phi \circ \rho$, $\topo_{\phi \circ \rho} \subset \topo_\rho$.
>
>
> # Uniform Convergence
>
> If $X$ is a [[Topological Space|topological space]], then $\rho(f, g) = \phi(\sup_{x \in X}|f(x) - g(x)|)$ is a metric on $\complex^X$, whose associated topology is the topology of [[Uniform Convergence|uniform convergence]].
>
> *Proof*. Since $\rho = \sup_{x \in X}|f(x) - g(x)|$ is the metric associated with uniform convergence, $\phi \circ \rho$ is a metric inducing the same topology.
>
>
> ### Uniform Convergence on Compact Sets
>
> If $X$ is a $\sigma$-compact [[Locally Compact Hausdorff Space|LCH]] space and $\seq{U_n}$ is a [[Sequence|sequence]] of precompact open sets such that $\ol{U_n} \subset U_{n + 1}$, then the function
> $
> \rho(f, g) = \sum_{n \in \nat}2^{-n}\phi\paren{\sup_{x \in \ol{U_n}}|f(x) - g(x)|}
> $
> is a metric on $\complex^X$ whose associated topology is the topology of [[Uniform Convergence on Compact Sets|uniform convergence on compact sets]].
>
> ### Metric
>
> $\rho$ is a metric on $\complex^X$.
>
> *Proof*. Denote
> $
> \rho_n(f, g) = \sup_{x \in \ol{U_n}}|f(x) - g(x)|
> $
> Let $f, g, h \in \complex^X$, then for all $n \in \nat$,
> $
> \rho_n(f, h) \le \rho_n(f, g) + \rho_n(g, h)
> $
> therefore
> $
> \begin{align*}
> \rho(f, h) &=\sum_{n \in \nat}2^{-n}\phi\paren{\rho_n(f, h)} \\
> &\le \sum_{n \in \nat}2^{-n}\phi\paren{\rho_n(f, g) + \rho_n(g, h)} \\
> &\le \sum_{n \in \nat}2^{-n}\braks{\phi \circ \rho_n(f, g) + \phi \circ \rho_n(g, h)} \\
> &\le \rho(f, g) + \rho(g, h)
> \end{align*}
> $
>
> Now, let $f, g \in \complex^X$. If $f - g \ne 0$, then there exists $x \in X$ such that $f(x) - g(x) \ne 0$, and $n \in \nat$ such that $x \in U_n$, in which case
> $
> \rho(f, g) \ge 2^{-n}\phi\paren{\rho_n(f, g)} > 0
> $
>
> Lastly, let $f, g \in \complex^X$, then
> $
> \begin{align*}
> \rho(f, g) &= \sum_{n \in \nat}2^{-n}\phi(p_n(f,g)) \\
> &= \sum_{n \in \nat}2^{-n}\phi(p_n(g, f)) \\
> &= \rho(g, f)
> \end{align*}
> $
> Therefore $\rho$ is a metric.
>
>
> ### Topology
>
> $\rho$ induces the topology of uniform convergence on compact sets.
>
> ##### Notation
>
> Let $\topo_U$ be the topology of uniform convergence, and $\topo_\rho$ be the topology induced by $\rho$. Denote $B(f, \varepsilon) = \bracs{g \in \complex^X: \rho(f, g) < \varepsilon}$, and
> $
> B(f, n, \varepsilon) = \bracs{g \in \complex^X: \rho_n(f, g) < \varepsilon}
> $
> then
> $
> \ce = \bracs{B(f, n, \varepsilon): f \in \complex^X, n \in \nat, \varepsilon > 0}
> $
> generates the topology of uniform convergence on compact sets.
>
>
> ##### Metric Generates Uniform Convergence
>
> Let $f \in \complex^X$, $n \in \nat$ and $r > 0$, then $B(f, n, r) \in \topo_\rho$. Therefore $\topo_U \subset \topo_\rho$.
>
> *Proof*. Let $g \in B(f, n, r)$, then $\rho_n(f, g) < r$. Let $\varepsilon_g = r - \rho_n(f, g)$, then for any $h \in B(g, n, \varepsilon_g)$, $\rho_n(f, h) \le \rho_n(f, g) + \rho_n(g, h) < \varepsilon_g$, and $h \in B(f, n, r)$.
>
> Since $\rho(g, h) = \sum_{n \in \nat}2^{-n}\rho_n(g, h)$, if $\rho(g, h) < 2^{-n}\phi(\varepsilon_g)$, then
> $
> \begin{align*}
> 2^{-n}\phi(\rho_n(g, h)) &\le \sum_{k \in \nat}2^{-k}\phi(\rho_n(g, h)) \le 2^{-n}\phi(\varepsilon_g) \\
> 2^{-n}\phi(\rho_n(g, h)) &\le 2^{-n}\phi(\varepsilon_g) \\
> \rho_n(g, h) &\le \varepsilon_g
> \end{align*}
> $
> and we can write
> $
> B(f, n, r) = \bigcup_{g \in B(f, n, r)}B(g, 2^{-n}\phi(\varepsilon_g))
> $
> as a union of open balls.
>
>
> ##### Uniform Convergence Generates Metric
>
> Let $f \in \complex^X$ and $r > 0$, then $B(f, r) \in \topo_U$. Therefore $T_\rho \subset T_U$.
>
> *Proof*. Let $g \in B(f, r)$, and $\varepsilon_g > 0$ such that $B(g, \varepsilon_g) \subset B(f, r)$. Choose $n_g \in \nat$ such that $2^{-n_g} < \varepsilon_g / 2$. Let $\delta_{g}$ be such that
> $
> \sum_{k = 1}^{n_g}2^{-k}\phi(\delta_{g}) < \varepsilon_g/2
> $
> Then whenever $\rho_{n_g}(g, h) < \delta_g$, as $\rho_m(g, h) \le \rho_n(g, h)$ whenever $n \ge m$,
> $
> \begin{align*}
> \sum_{n \in \nat}2^{-n}\phi(\rho_n(g, h)) &= \sum_{k = 1}^{n_g}2^{-k}\phi(\rho_k(g, h)) + \sum_{k > n_g}2^{-k}\phi(\rho_k(g, h)) \\
> &< \underbrace{\sum_{k = 1}^{n_g}2^{-k}\phi(\delta_{g})}_{< \varepsilon_g / 2} + \underbrace{\sum_{k > n_g}2^{-k}\phi(\rho_k(g, h))}_{< \varepsilon_g / 2} \\
> &< \varepsilon_g
> \end{align*}
> $
> and we have found $B(g, n_g, \delta_{g}) \subset B(g, \varepsilon_g)$, meaning that
> $
> B(f, r) = \bigcup_{g \in B(f, r)}B(g, n_g, \delta_g)
> $
> is a union of "open balls".
> [!theorem]
>
> Let $U$ be an open set and $V \subset \subset U$ be a compactly contained open set, then
> $
> d(V, \partial U) > 0
> $
> *Proof*. Let $K = \ol{V}$, then $K \cap \partial U = \emptyset$. If $d(K, \partial U) = 0$, then there exists $\seq{x_n} \subset \partial U$ and $\seq{y_n} \subset K$ such that $d(x_n, y_n) \to 0$. By sequential compactness, there exists $y \in K$ such that $d(x_n, y) = 0$. This implies that $K \cap \partial U \ne \emptyset$.