> [!definition]
>
> $
> \topo_A = \bracs{U \cap A: U \in \topo}
> $
> Let $(X, \topo)$ be a [[Topological Space|topological space]], and let $A \subseteq X$. The **relative topology** on $A$ induced by $X$, $\topo_A$, is the intersection of elements of $\topo$ and $A$.
>
> A set in $\topo_A$ is *relatively* open.