> [!theorem]
>
> $
> |b - a| \equiv d(a, b) = \sqrt{\sum_{k=1}^{n}(a_k - b_k)^2}
> $
> The [[Real Coordinate Space|real space]] $\real^n$ with [[Euclidean Space|Euclidean distance]] as its distance function is a [[Metric Space|metric space]].
> [!definition]
>
> A [[Set|set]] $U \subseteq \real^n$ is an [[Open Set|open set]] if
> $
> \forall a \in U, \exists \varepsilon > 0: \bracs{x: |x - a|< \varepsilon} \subseteq U
> $
> [!definition]
>
> Let $\topo$ be the set of all open sets. $(\real^n, \topo)$ is a [[Topological Space|topological space]] and is called the **standard topology on $\real^n$**.
>
> *Proof*. Let $A, B \in \topo$. Then $A \cup B$ is obviously another open set, and therefore $A \cup B \in \topo$. Let $x \in A \cap B$. Then
> $
> \begin{align*}
> \exists \varepsilon_a > 0: \bracs{x: |x - a| < \varepsilon_a} \subseteq A \\
> \exists \varepsilon_b > 0: \bracs{x: |x - a| < \varepsilon_b} \subseteq B
> \end{align*}
> $
> Let $\varepsilon = \min(\varepsilon_a, \varepsilon_b)$, and assume without loss of generality that $\varepsilon_a \le \varepsilon_b$. Then,
> $
> \bracs{x: |x - a| < \varepsilon_a} \subseteq \bracs{x: |x - a| < \varepsilon_b} \subseteq B
> $
> and since $\bracs{x: |x - a| < \varepsilon_a} \subseteq A$, $\bracs{x: |x - a| < \varepsilon_a} \subseteq A \cap B$. Therefore $A \cap B$ is an open set.
>
> $\real^n$ is an open set, and $\emptyset$ is an open set as no elements are in it.
> [!theorem]
>
> The standard topology on $\real^n$ is a [[Hausdorff Space|Hausdorff space]].
>
> *Proof*. Let $a, b \in \real^n$, $a \ne b$. Then $|a - b| = \varepsilon$. Let
> $
> A = \bracs{x: |x - a|< \varepsilon/3} \quad B = \bracs{x: |x - b| < \varepsilon/3}
> $
> Let $x \in A \cap B$, then
> $
> |a - b| = |a - x + x - b| \le |x - a| + |x - b| = \frac{2\varepsilon}{3}
> $
> Contradiction. Therefore $A \cap B = \emptyset$, and $\real^n$ is a Hausdorff space.
> [!theorem]
>
> Every [[Open Set|open set]] in $\real$ is a **countable** **disjoint** union of open intervals.